• 제목/요약/키워드: Train Detection

검색결과 386건 처리시간 0.024초

컴퓨터 단층촬영 영상에서 3번 요추부 슬라이스 검출을 위한 최적화 기반 딥러닝 모델 (Optimization-based Deep Learning Model to Localize L3 Slice in Whole Body Computerized Tomography Images)

  • 채성원;조재현;박예은;정진형;김성진;최안렬
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.331-337
    • /
    • 2023
  • 본 논문에서는 근감소증의 발병 여부와 정도를 확인하기 위해 3번 요추부 (L3) CT 영상을 검출하는 딥러닝 모델을 제안하는 것이다. 또한, CT 데이터 내에 L3 레벨과 L3 레벨이 아닌 부분의 데이터 불균형으로 인한 성능 저하의 문제점을 오버샘플링 비율과 클래스 가중치를 설계변수로 하는 최적화 기법을 제시하고자 한다. 모델 학습 및 검증을 위하여 강릉아산병원에 내원한 전립선암 환자 104명, 방광암 환자 46명의 총 150명의 전신 CT 영상이 활용되었다. 딥러닝 모델은 ResNet50을 활용하였으며, 최적화기법의 설계변수로는 모델 하이퍼파라미터 5종과 데이터 증강비율 및 클래스 가중치로 선정하였다. 제안하는 최적화 기반의 L3 레벨 추출 모델은 대조군 (하이퍼파라미터 5종만을 최적화한 모델)과 비교하여 중간 L3 오차가 약 1.0 슬라이스 감소한 것을 확인할 수 있었다. 본 연구결과를 통하여 정확한 L3 슬라이스 검출이 가능하며, 추가적으로 데이터 증강을 통한 오버 샘플링과 클래스 가중치 조절을 통해 데이터 불균형 문제를 효과적으로 해결할 수 있는 가능성을 제시할 수 있다.

준지도 학습과 전이 학습을 이용한 선로 체결 장치 결함 검출 (Detection Fastener Defect using Semi Supervised Learning and Transfer Learning)

  • 이상민;한석민
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.91-98
    • /
    • 2023
  • 오늘날 인공지능 산업이 발전함에 따라 여러 분야에 걸쳐 인공지능을 통한 자동화 및 최적화가 이루어지고 있다. 국내의 철도 분야 또한 지도 학습을 이용한 레일의 결함을 검출하는 연구들을 확인할 수 있다. 그러나 철도에는 레일만이 아닌 다른 구조물들이 존재하며 그중 선로 체결 장치는 레일을 다른 구조물에 결합시켜주는 역할을 하는 장치로 안전사고의 예방을 위해서 주기적인 점검이 필요하다. 본 논문에는 선로 체결 장치의 데이터를 이용하여 준지도 학습(semi-supervised learning)과 전이 학습(transfer learning)을 이용한 분류기를 학습시켜 선로 안전 점검에 사용되는 비용을 줄이는 방안을 제안한다. 사용된 네트워크는 Resnet50이며 imagenet으로 선행 학습된 모델이다. 레이블이 없는 데이터에서 무작위로 데이터를 선정 후 레이블을 부여한 뒤 이를 통해 모델을 학습한다. 학습된 모델의 이용하여 남은 데이터를 예측 후 예측한 데이터 중 클래스 별 확률이 가장 높은 데이터를 정해진 크기만큼 훈련용 데이터에 추가하는 방식을 채택하였다. 추가적으로 초기의 레이블된 데이터의 크기가 끼치는 영향력을 확인해보기 위한 실험을 진행하였다. 실험 결과 최대 92%의 정확도를 얻을 수 있었으며 이는 지도 학습 대비 5% 내외의 성능 차이를 가진다. 이는 제안한 방안을 통해 추가적인 레이블링 과정 없이 비교적 적은 레이블을 이용하여 분류기의 성능을 기존보다 향상시킬 수 있을 것으로 예상된다.

패시브 음향조사와 목시조사를 통한 한국 남해안에 서식하는 상괭이 종(Neophocaena asiaeorientalis )의 출몰 및 음향 특성 (Occurrence and acoustic characteristics of finless porpoise (Neophocaena asiaeorientalis) off the south coast of Korea using hydrophone and visual surveys)

  • 김현영;정지훈;강동하;;강명희
    • 수산해양기술연구
    • /
    • 제60권3호
    • /
    • pp.258-268
    • /
    • 2024
  • We presented foundational findings regarding the occurrence and acoustic characteristics of the finless porpoise through passive acoustic and visual surveys conducted on the southern coast of Korea, specifically at Hadong Jungpyeong Port. Over a survey period spanning from July 8 to August 16, 2023, totaling 40 days, we observed peaks in the number of clicks produced by this species on July 15, July 24, August 4, August 11, and August 16. The highest count, totaling 18,924 clicks, was recorded on July 15th, while the lowest count, at 3,888 clicks, occurred on August 8th. Examining the acoustic characteristics throughout the diurnal cycle, we found that the peak activity in terms of DPM (detection positive minute for one hour), DP10M (DPM for ten minutes), and overall number of click sounds was observed between 05:00 and 08:00, with a secondary peak occurring from 17:00 to 18:00. The quietest period was noted between 23:00 and 02:00. Furthermore, there was a significant increase in the number of clicks from sunrise, with the maximum count of 21,581 clicks recorded at 6 AM. This count gradually decreased until noon, experienced a slight increase thereafter, peaked again at sunset, and then declined. The dominant frequency mode of this species was 126 kHz, with a concentration ranging from 112 to 136 kHz. The average duration of a click sound was 127 ㎲, with approximately 16 sinusoids (cycles) within each click sound and an average cycle length of approximately 7.9 ㎲. These findings from our study are anticipated to serve as foundational data for the development of a Korean pinger and acoustic warning system.

MMORPG 게임의 이탈 유저에 대한 인공지능 기반 조기 탐지 (AI-based early detection to prevent user churn in MMORPG)

  • 이민혁;박선우;이성환;김수인;조윤영;송대섭;이문영;정윤서
    • 응용통계연구
    • /
    • 제37권4호
    • /
    • pp.525-539
    • /
    • 2024
  • Massive multiplayer online role playing game (MMORPG)은 국내 게임에서 큰 비중을 차지하는 게임 장르이다. MMORPG에서 유저 이탈 예측은 중요한 과제 중 하나이다. 인게임 결제가 수익 비중이 높기에 유저 잔존율이 서비스 수명 및 수익과 깊이 연관되기 때문이다. 만약, 특정 유저의 이탈을 사전에 예측할 수 있다면 프로모션을 통해 해당 유저의 잔존을 유도할 수 있을 것이다. 따라서, 이탈 예측 문제에서는 예측의 정확도도 중요하지만 이탈의 징후를 얼마나 빠르게 파악할 수 있는지 또한 중요하다. 본 논문에서는 이탈 징후를 조기에 탐지하기 위하여, 유저별 잔존 확률을 일별로 예측하고 이 예측된 확률 값들을 활용하여 유저 이탈 징후를 조기에 파악하는 방법을 제안한다. 이를 위해, 국내 게임사의 유저 로그 데이터로 여러 모형을 학습하고 유저별 잔존 확률을 구하여 잔존 확률의 변화 패턴에 대한 분석을 통해 이탈 가능성이 높은 유저를 조기에 감지할 수 있는 경험적 규칙을 보인다. 최종적으로, 성능 평가 결과를 통해 기존에 접속일을 기반으로 한 규칙보다 제시한 규칙을 이용할 시 이탈 유저를 조기에 감지할 수 있음을 확인한다. 추가적으로, 유저가 이탈하기 전 시점에 게임 접속 중 유저 이탈을 예측하는 방법과 유저의 게임 스타일에 따른 프로모션 방안을 제시한다.

무인기로 취득한 RGB 영상과 YOLOv5를 이용한 수수 이삭 탐지 (Sorghum Panicle Detection using YOLOv5 based on RGB Image Acquired by UAV System)

  • 박민준;유찬석;강예성;송혜영;백현찬;박기수;김은리;박진기;장시형
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.295-304
    • /
    • 2022
  • 본 연구는 수수의 수확량 추정을 위해 무인기로 취득한 RGB 영상과 YOLOv5를 이용하여 수수 이삭 탐지 모델을 개발하였다. 이삭이 가장 잘 식별되는 9월 2일의 영상 중 512×512로 분할된 2000장을 이용하여 모델의 학습, 검증 및 테스트하였다. YOLOv5의 모델 중 가장 파라미터가 적은 YOLOv5s에서 mAP@50=0.845로 수수 이삭을 탐지할 수 있었다. 파라미터가 증가한 YOLOv5m에서는 mAP@50=0.844로 수수 이삭을 탐지할 수 있었다. 두 모델의 성능이 유사하나 YOLOv5s (4시간 35분)가 YOLOv5m (5시간 15분)보다 훈련시간이 더 빨라 YOLOv5s가 수수 이삭 탐지에 효율적이라고 판단된다. 개발된 모델을 이용하여 수수의 수확량 예측을 위한 단위면적당 이삭 수를 추정하는 알고리즘의 기초자료로 유용하게 활용될 것으로 판단된다. 추가적으로 아직 개발의 초기 단계를 감안하면 확보된 데이터를 이용하여 성능 개선 및 다른 CNN 모델과 비교 검토할 필요가 있다고 사료된다.

매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색 (Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage)

  • 권문희;김승섭
    • 자원환경지질
    • /
    • 제55권5호
    • /
    • pp.551-561
    • /
    • 2022
  • 지구물리탐사기법은 매장 문화재 조사에 필요한 높은 해상도의 지하 구조 영상 생성과 매장 유구의 정확한 위치 결정하는 데 매우 유용하다. 이 연구에서는 경주 신라왕경 중심방의 고해상도 지하투과레이더 영상에서 유구의 규칙적인 배열이나 선형 구조를 자동적으로 구분하기 위하여 영상처리 기법인 영상 특징 추출과 영상분할 기법을 적용하였다. 영상 특징 추출의 대상은 유구의 원형 적심과 선형의 도로 및 담장으로 캐니 윤곽선 검출(Canny edge detection)과 허프 변환(Hough Transform) 알고리듬을 적용하였다. 캐니 윤곽선 검출 알고리듬으로 검출된 윤곽선 이미지에 허프 변환을 적용하여 유구의 위치를 탐사 영상에서 자동 결정하고자 하였으나, 탐사 지역별로 매개변수를 달리해서 적용해야 한다는 제약이 있었다. 영상 분할 기법의 경우 연결요소 분석 알고리듬과 QGIS에서 제공하는 Orfeo Toolbox (OTB)를 이용한 객체기반 영상분석을 적용하였다. 연결 요소 분석 결과에서, 유구에 의한 신호들이 연결된 요소들로 효과적으로 인식되었지만 하나의 유구가 여러 요소로 분할되어 인식되는 경우도 발생함을 확인하였다. 객체기반 영상분석에서는 평균이동(Large-Scale Mean-Shift, LSMS) 영상 분할을 적용하여 각 분할 영역에 대한 화소 정보가 포함된 벡터 레이어를 우선 생성하였고, 유구를 포함하는 영역과 포함하지 않는 영역을 선별하여 훈련 모델을 생성하였다. 이 훈련모델에 기반한 랜덤포레스트 분류기를 이용해 LSMS 영상분할 벡터 레이어에서 유구를 포함하는 영역과 그렇지 않은 영역이 자동 분류 될 수 있음을 확인하였다. 이러한 자동 분류방법을 매장 문화재 지하투과레이더 영상에 적용한다면 유구 발굴 계획에 활용가능한 일관성 있는 결과를 얻을 것으로 기대한다.