• Title/Summary/Keyword: Trailing Vortex

Search Result 122, Processing Time 0.022 seconds

Three Dimensional Aerodynamic Characteristics of a Small Bee in Hovering Flight (정지비행하는 작은 벌의 3차원 공력특성)

  • Ro, Ki-Deok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.102-108
    • /
    • 2006
  • The three-dimensional flows in the Weis-Fogh mechanism are studied by flow visualization and numerical simulation by the discrete vortex method. In this mechanism, two wings open, touching their trailing edges (fling), and rotate in opposite directions in the horizontal plane. The structure of the vortex systems shed from the wings is very complicated and their effects on the forces on the wings have not yet been clarified. The discrete vortex method, especially the vortex stick method, is employed to investigate the vortex structure in the wake of the two wings. The wings are represented by lattice vortices, and the shed vortices are expressed by discrete three-dimensional vortex sticks. The vortex distributions and the velocity field are calculated. The pressure is estimated by the Bernoulli equation, and the lift on the wing are also obtained.

  • PDF

Pressure Drop Characteristics in a Coolant Passage With Turning Region and Rotation (냉각유로 내 곡관부 및 유로의 회전이 압력강하에 미치는 영향)

  • Kim, Kyung-Min;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.32-40
    • /
    • 2007
  • The present study investigated local pressure drop in a rotating smooth square duct with turning region. The duct has a hydraulic diameter $(D_h)$ of 26.7mm and a divider wall of 6.0mm or $0.225D_h$. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure coefficient distribution $(C_p)$, the friction factor (f) and the thermal performance $({\eta})$ are presented on the leading, the trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}-turn$ produces Dean vortices that cause the high pressure drop in the turning region. The duct rotation results in the pressure coefficient discrepancy between the leading and trailing surfaces. That is, the high pressure values appear on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. As the rotation number increases, the pressure discrepancy enlarges. In the fuming region, a pair of the Dean vortices in the stationary case transform into one large asymmetric vortex cell, and then the pressure drop characteristics also change.

3-D Velocity Fields Measurements of Propeller Wake Using a Stereoscopic PIV (Stereoscopic PIV기법을 이용한 프로펠러 후류의 3차원 속도장 측정)

  • Paik Bu-Geun;Lee Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.185-188
    • /
    • 2002
  • The objective of present paper is to apply a stereoscopic PIV(Particle Image Velocimetry) techiique for measuring the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. It is essential to measure 3-components velocity fields for the investigation of complicated near-wake behind the propeller. The out-of-plane velocity component was measured using the particle images captured by two CCD cameras in the angular displacement configuration.400 instantaneous velocity fields were measured for each of few different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$. They were ensemble averaged to investigate the spatial evolution of the propeller wake in the region ranged from the trailing edge to the region of one propeller diameter(D) downstream. The phase-averaged velocity fields show the viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were formed periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component has large values at the tip and trailing votices. With going downstream, the axial turbulence intensity and the strength of tip vortices were decreased due to the visous dissipation, turbulence diffusion and blade-to-blade interaction. The blade wake traveling at higher speed with respect to the tip vortex overtakes and interacts with tip vortices formed from the previous blade. Tip vortices are separated from the wake and show oscillating trajectory

  • PDF

Characteristics of the Starting Flow of a Rushton Turbine Mixer (러쉬톤 교반기의 초기 비정상 유동 특성)

  • Park, Gyeong-Hyeon;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1543-1551
    • /
    • 2001
  • The characteristics of starting flow of a six-blade Rushton turbine mixer were investigated by using a cinematic Particle Image Velocimetry technique. The flows were quantified by measurements of velocity fields with a 4 ms time interval for a blade rotational speed of 100 r.p.m, so that the turbine Reynolds number(ND$^2$/ ν) was fixed to 6,960. The radial shedding of the trailing vortices starts from passing four blades after the beginning of rotation. It clearly shows that the vortex pairing phenomena caused by the interactions between trailing cortices firm consequtive blades. The average convection velocity of the radial flow is found to be 28 % of the tip velocity. The starting flow seems to arrive at a steady state after 8 revolutions in this study, which corresponds nearly one circulation through the bulk flow trajectory with the average radial convection velocity.

Analysis of Flow around a Rotating Marine Propeller using PIV Techniques

  • Lee Sang Joon;Paik Bu Geun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.169-175
    • /
    • 2004
  • The characteristics of flow around a rotating propeller were investigated using PIV technique. For each of four different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$four hundred instantaneous velocity fields were ensemble averaged to investigate the spatial evolution of the flow around a propeller. The phase-averaged mean velocity fields show that the viscous wake formed by the boundary layers developed on the blade surfaces and the slipstream contraction in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. The boundary layer developed along the ship hull bottom surface of the ship stern provides a strong turbulent shear layer, affecting the vortex structure in the propeller near-wake. As the flow develops in the downstream direction, the trailing vortices formed behind the propeller hub move upward slightly due to the presence of the hull wake and free surface. The turbulence intensity has large values around the tip and trailing vortices. As the wake moves downstream, the strength of the vorticity diminishes and the turbulence intensity increases due to turbulent diffusion and active mixing between the tip vortices and adjacent wake flow.

  • PDF

Charateristics of Wake Flow in a Flat Plate Blade Having TS and TP Cutting (평판익 후연의 형상에 따른 후류 특성)

  • Jang, Choon-Man;Ahmad, Imteyaz;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.452-455
    • /
    • 2004
  • The influence of wake flow on a flat-plate blade having different shapes near the hailing edge has been investigated in this paper. Two different shapes near the trailing edge namely the pressure surface cutting (TP) and the suction surface cutting (TS) have been used. The calculation has been performed for two different angles of attack (a =10 and 15 degree) in both the cases. RANS equations have been solved using SST-model as a turbulence closure. Cp and CL values obtained for TS are higher compared to those obtained for TP. Also, the vorticity distribution obtained in case of TS is stronger as compared to that obtained in the case of TP The Karmann Vortex is observed in both the cases but it is more clear in TS case. It is found that in the case of TS, flow separation does not occur upto the trailing edge on both the suction and the pressure sides of the blade while in the case of TP, the flow separateson the pressure surface near the trailing edge of the flat-plate blade.

  • PDF

Computation of serrated trailing edge flow and noise using a hybrid zonal RANS-LES

  • Kim, Tae-Hyung;Lee, Seung-Hoon;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.414-419
    • /
    • 2012
  • The evaluation of a zonal RANS-LES approach is documented for the prediction of broadband noise generated by the flow past unmodified and serrated airfoil trailing edges at a high Reynolds number. A multi-domain decomposition is considered, where the acoustic sources are resolved with a LES sub-domain embedded in the RANS domain. A stochastic vortex method is used to generate synthetic turbulent perturbations at the RANS-LES interface. The simulations are performed with a general-purpose unstructured control-volume code FLUENT. The far-field noise is calculated using the aeroacoustic analogy of Ffowcs Williams-Hawkings. The results of the simulation are validated through the full-scaled wind turbine acoustic measurements. It is found that the present approach is adequate for predicting noise radiation of serrated trailing edge flow for low noise rotor system.

  • PDF

Computation of Serrated Trailing Edge Flow and Noise Using a Hybrid Zonal RANS-LES (혼합 영역 RANS-LES를 이용한 톱니 뒷전 유동 및 소음장의 계산)

  • Kim, Tae-Hyung;Lee, Seung-Hoon;Lee, Soo-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.444-450
    • /
    • 2012
  • The evaluation of a zonal RANS-LES approach is documented for the prediction of broadband noise generated by the flow past unmodified and serrated airfoil trailing edges at a high Reynolds number. A multi-domain decomposition is considered, where the acoustic sources are resolved with a LES sub-domain embedded in the RANS domain. A stochastic vortex method is used to generate synthetic turbulent perturbations at the RANS-LES interface. The simulations are performed with a general-purpose unstructured control-volume code FLUENT. The far-field noise is calculated using the aeroacoustic analogy of Ffowcs Williams-Hawkings. The results of the simulation are validated through the full-scaled wind turbine acoustic measurements. It is found that the present approach is adequate for predicting noise radiation of serrated trailing edge flow for low noise rotor system.

Fluid-Structure Interaction Analysis of Two-Dimensional Wings (2차원 날개의 유체-구조 연성해석)

  • Ahn, Byoung-Kwon;Lee, Suk-Jeong;Kim, Ji-Hye;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.343-348
    • /
    • 2013
  • When a natural frequency of the trailing edge of a wing is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appears, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, we first evaluate main features of oscillating characteristics of the wing. Second we simulate fluid-structure interaction of the wing with a flap using a commercial code, ANSYS-CFX, and investigate lift characteristics in a frequency domain.

Aero-acoustic Performance Pprediction Method and Parametric Studies of Axial Flow Fan (축류 홴의 공력-음향학적 성능 예측방법 및 매개변수 연구)

  • Lee, Chan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.661-669
    • /
    • 1996
  • Proposed is an aero-acoustic performance prediction method of axial fan. The fan aerodynamic performance is predicted by combining pitch-averaged quasi 3-D flow analysis with pressure loss models for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flows. Fan noise is assumed to be radiated as dipole distribution type, and its generation is assumed to be mainly due to the vortex street shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex stree shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex street model with thin airfoil theory. The aero-acoustic performance prediction results by the present method are in good agreement with the measured results of several axial fans. With the present prediction method, parametric studies are carried out to investigate the effects of blade chord length and spacing on the efficiency and the noise level of fan. In the case of lightly loaded fan, both efficiency improvement and noise reduction can be achieved by decreasing chord length or by increasing blade specing. However, when fan is designed at highly loaded condition, the noise reduction by increasing blade spacing penalizes the attaninable efficiency of fan.

  • PDF