• Title/Summary/Keyword: Traffic performance

Search Result 3,504, Processing Time 0.029 seconds

Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process

  • Qi-Ang Wang;Hao-Bo Wang;Zhan-Guo Ma;Yi-Qing Ni;Zhi-Jun Liu;Jian Jiang;Rui Sun;Hao-Wei Zhu
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.267-279
    • /
    • 2023
  • Data modelling and interpretation for structural health monitoring (SHM) field data are critical for evaluating structural performance and quantifying the vulnerability of infrastructure systems. In order to improve the data modelling accuracy, and extend the application range from data regression analysis to out-of-sample forecasting analysis, an improved most likely heteroscedastic Gaussian process (iMLHGP) methodology is proposed in this study by the incorporation of the outof-sample forecasting algorithm. The proposed iMLHGP method overcomes this limitation of constant variance of Gaussian process (GP), and can be used for estimating non-stationary typhoon-induced response statistics with high volatility. The first attempt at performing data regression and forecasting analysis on structural responses using the proposed iMLHGP method has been presented by applying it to real-world filed SHM data from an instrumented cable-stay bridge during typhoon events. Uncertainty quantification and correlation analysis were also carried out to investigate the influence of typhoons on bridge strain data. Results show that the iMLHGP method has high accuracy in both regression and out-of-sample forecasting. The iMLHGP framework takes both data heteroscedasticity and accurate analytical processing of noise variance (replace with a point estimation on the most likely value) into account to avoid the intensive computational effort. According to uncertainty quantification and correlation analysis results, the uncertainties of strain measurements are affected by both traffic and wind speed. The overall change of bridge strain is affected by temperature, and the local fluctuation is greatly affected by wind speed in typhoon conditions.

A Study on Real-time Autonomous Driving Simulation System Construction based on Digital Twin - Focused on Busan EDC - (디지털트윈 기반 실시간 자율주행 시뮬레이션 시스템 구축 방안 연구 - 부산 EDC 중심으로 -)

  • Kim, Min-Soo;Park, Jong-Hyun;Sim, Min-Seok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.2
    • /
    • pp.53-66
    • /
    • 2023
  • Recently, there has been a significant interest in the development of autonomous driving simulation environment based on digital twin. In the development of such digital twin-based simulation environment, many researches has been conducted not only performance and functionality validation of autonomous driving, but also generation of virtual training data for deep learning. However, such digital twin-based autonomous driving simulation system has the problem of requiring a significant amount of time and cost for the system development and the data construction. Therefore, in this research, we aim to propose a method for rapidly designing and implementing a digital twin-based autonomous driving simulation system, using only the existing 3D models and high-definition map. Specifically, we propose a method for integrating 3D model of FBX and NGII HD Map for the Busan EDC area into CARLA, and a method for adding and modifying CARLA functions. The results of this research show that it is possible to rapidly design and implement the simulation system at a low cost by using the existing 3D models and NGII HD map. Also, the results show that our system can support various functions such as simulation scenario configuration, user-defined driving, and real-time simulation of traffic light states. We expect that usability of the system will be significantly improved when it is applied to broader geographical area in the future.

Characteristic Analysis on Urban Road Networks Using Various Path Models (다양한 경로 모형을 이용한 도시 도로망의 특성 분석)

  • Bee Geum;Hwan-Gue Cho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.269-277
    • /
    • 2024
  • With the advancement of modern IT technologies, the operation of autonomous vehicles is becoming a reality, and route planning is essential for this. Generally, route planning involves proposing the shortest path to minimize travel distance and the quickest path to minimize travel time. However, the quality of these routes depends on the topological characteristics of the road network graph. If the connectivity structure of the road network is not rational, there are limits to the performance improvement that routing algorithms can achieve. Real drivers consider psychological factors such as the number of turns, surrounding environment, traffic congestion, and road quality when choosing routes, and they particularly prefer routes with fewer turns. This paper introduces a simple path algorithm that seeks routes with the fewest turns, in addition to the traditional shortest distance and quickest time routes, to evaluate the characteristics of road networks. Using this simple path algorithm, we compare and evaluate the connectivity characteristics of road networks in 20 major cities worldwide. By analyzing these road network characteristics, we can identify the strengths and weaknesses of urban road networks and develop more efficient and safer route planning algorithms. This paper comprehensively examines the quality of road networks and the efficiency of route planning by analyzing and comparing the road network characteristics of each city using the proposed simple path algorithm.

Open Innovation in Car-Sharing Industry: Focusing on the Cooperation Case between Gongcar and Rental Car Company (카셰어링 산업의 개방형 혁신: (주)공카와 렌터카 업체간 개방형 혁신 사례를 중심으로)

  • Kiyeon Hwang;Jaehong Park;Youngwoo Sohn;Woosung Nam;Yeonhwa Cho
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.1
    • /
    • pp.93-105
    • /
    • 2024
  • Car-sharing is a representative model of the sharing economy, and it is a service that rents or uses a car for the necessary time without owning a car. This industry is growing due to various factors such as technological advances, increasing awareness of environmental protection, and increasing demand for solving traffic congestion problems in cities. Accordingly, there is a need for a strategic approach for companies providing car-sharing services to respond quickly to market changes in order to expand market share and differentiate services. Accordingly, this study conducted a case study on open innovation activities between Gongcar and existing rental car companies, focusing on the research question "What effects do open innovation activities between car-sharing companies and existing rental car companies cause?" As a result of the study, it was confirmed that Gongcar have (1) the ability to actively respond to market fluctuations by establishing a flexible vehicle supply chain based on demand, (2) have significantly reduced growth capital expenditure (Growth Capex), and both cafe and rental car companies have (3) performed successful open innovation by improving key KPI indicators and recording financial performance. This study reveals how open innovation acts as a key business growth engine in the car-sharing industry, and its significance is found in that it empirically confirmed the successful implementation conditions of open innovation based on resource dependence theory.

  • PDF

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Fast Join Mechanism that considers the switching of the tree in Overlay Multicast (오버레이 멀티캐스팅에서 트리의 스위칭을 고려한 빠른 멤버 가입 방안에 관한 연구)

  • Cho, Sung-Yean;Rho, Kyung-Taeg;Park, Myong-Soon
    • The KIPS Transactions:PartC
    • /
    • v.10C no.5
    • /
    • pp.625-634
    • /
    • 2003
  • More than a decade after its initial proposal, deployment of IP Multicast has been limited due to the problem of traffic control in multicast routing, multicast address allocation in global internet, reliable multicast transport techniques etc. Lately, according to increase of multicast application service such as internet broadcast, real time security information service etc., overlay multicast is developed as a new internet multicast technology. In this paper, we describe an overlay multicast protocol and propose fast join mechanism that considers switching of the tree. To find a potential parent, an existing search algorithm descends the tree from the root by one level at a time, and it causes long joining latency. Also, it is try to select the nearest node as a potential parent. However, it can't select the nearest node by the degree limit of the node. As a result, the generated tree has low efficiency. To reduce long joining latency and improve the efficiency of the tree, we propose searching two levels of the tree at a time. This method forwards joining request message to own children node. So, at ordinary times, there is no overhead to keep the tree. But the joining request came, the increasing number of searching messages will reduce a long joining latency. Also searching more nodes will be helpful to construct more efficient trees. In order to evaluate the performance of our fast join mechanism, we measure the metrics such as the search latency and the number of searched node and the number of switching by the number of members and degree limit. The simulation results show that the performance of our mechanism is superior to that of the existing mechanism.

Bandwidth Reservation and Call Admission Control Mechanisms for Efficient Support of Multimedia Traffic in Mobile Computing Environments (이동 컴퓨팅 환경에서 멀티미디어 트래픽의 효율적 지원을 위한 대역폭 예약 및 호 수락 제어 메커니즘)

  • 최창호;김성조
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.6
    • /
    • pp.595-612
    • /
    • 2002
  • One of the most important issues in guaranteeing the high degree of QoS on mobile computing is how to reduce hand-off drops caused by lack of available bandwidth in a new cell. Each cell can request bandwidth reservation to its adjacent cells for hand-off calls. This reserved bandwidth can be used only for hand-offs, not for new calls. It is also important to determine how much of bandwidth should be reserved for hand-off calls because reserving too much would increase the probability of a new call being blocked. Therefore, it is essential to develop a new mechanism to provide QoS guarantee on a mobile computing environment by reserving an appropriate amount of bandwidth and call admission control. In this paper. bandwidth reservation and call admission control mechanisms are proposed to guarantee a consistent QoS for multimedia traffics on a mobile computing environment. For an appropriate bandwidth reservation, we propose an adaptive bandwidth reservation mechanism based on an MPP and a 2-tier cell structure. The former is used to predict a next move of the client while the latter to apply our mechanism only to the client with a high hand-off probability. We also propose a call admission control that performs call admission test only on PNC(Predicted Next Cell) of a client and its current cell. In order to minimize a waste of bandwidth caused by an erroneous prediction of client's location, we utilize a common pool and QoS adaptation scheme. In order evaluate the performance of our call admission control mechanism, we measure the metrics such as the blocking probability of new calls, dropping probability of hand-off calls, and bandwidth utilization. The simulation results show that the performance of our mechanism is superior to that of the existing mechanisms such as NR-CAT2, FR-CAT2, and AR-CAT2.

A Dynamic Prefetch Filtering Schemes to Enhance Usefulness Of Cache Memory (캐시 메모리의 유용성을 높이는 동적 선인출 필터링 기법)

  • Chon Young-Suk;Lee Byung-Kwon;Lee Chun-Hee;Kim Suk-Il;Jeon Joong-Nam
    • The KIPS Transactions:PartA
    • /
    • v.13A no.2 s.99
    • /
    • pp.123-136
    • /
    • 2006
  • The prefetching technique is an effective way to reduce the latency caused memory access. However, excessively aggressive prefetch not only leads to cache pollution so as to cancel out the benefits of prefetch but also increase bus traffic leading to overall performance degradation. In this thesis, a prefetch filtering scheme is proposed which dynamically decides whether to commence prefetching by referring a filtering table to reduce the cache pollution due to unnecessary prefetches In this thesis, First, prefetch hashing table 1bitSC filtering scheme(PHT1bSC) has been shown to analyze the lock problem of the conventional scheme, this scheme such as conventional scheme used to be N:1 mapping, but it has the two state to 1bit value of each entries. A complete block address table filtering scheme(CBAT) has been introduced to be used as a reference for the comparative study. A prefetch block address lookup table scheme(PBALT) has been proposed as the main idea of this paper which exhibits the most exact filtering performance. This scheme has a length of the table the same as the PHT1bSC scheme, the contents of each entry have the fields the same as CBAT scheme recently, never referenced data block address has been 1:1 mapping a entry of the filter table. On commonly used prefetch schemes and general benchmarks and multimedia programs simulates change cache parameters. The PBALT scheme compared with no filtering has shown enhanced the greatest 22%, the cache miss ratio has been decreased by 7.9% by virtue of enhanced filtering accuracy compared with conventional PHT2bSC. The MADT of the proposed PBALT scheme has been decreased by 6.1% compared with conventional schemes to reduce the total execution time.

Real data-based active sonar signal synthesis method (실데이터 기반 능동 소나 신호 합성 방법론)

  • Yunsu Kim;Juho Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • The importance of active sonar systems is emerging due to the quietness of underwater targets and the increase in ambient noise due to the increase in maritime traffic. However, the low signal-to-noise ratio of the echo signal due to multipath propagation of the signal, various clutter, ambient noise and reverberation makes it difficult to identify underwater targets using active sonar. Attempts have been made to apply data-based methods such as machine learning or deep learning to improve the performance of underwater target recognition systems, but it is difficult to collect enough data for training due to the nature of sonar datasets. Methods based on mathematical modeling have been mainly used to compensate for insufficient active sonar data. However, methodologies based on mathematical modeling have limitations in accurately simulating complex underwater phenomena. Therefore, in this paper, we propose a sonar signal synthesis method based on a deep neural network. In order to apply the neural network model to the field of sonar signal synthesis, the proposed method appropriately corrects the attention-based encoder and decoder to the sonar signal, which is the main module of the Tacotron model mainly used in the field of speech synthesis. It is possible to synthesize a signal more similar to the actual signal by training the proposed model using the dataset collected by arranging a simulated target in an actual marine environment. In order to verify the performance of the proposed method, Perceptual evaluation of audio quality test was conducted and within score difference -2.3 was shown compared to actual signal in a total of four different environments. These results prove that the active sonar signal generated by the proposed method approximates the actual signal.

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.