• Title/Summary/Keyword: Traffic operation

Search Result 1,464, Processing Time 0.033 seconds

Ground Risk Model Development for Low Altitude UAV Traffic Management (저고도 무인기 교통관리를 위한 지상 충돌 위험 모델 개발)

  • Kim, Youn-sil
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.471-478
    • /
    • 2020
  • In this paper, we develop the ground risk model of unmanned aerial vehicle (UAV) operation to quantify the ground risk when the UAV falls to the ground during the intended operation in case of UAV failure. The ground risk is computed by using the UAV failure probability, the probability of impact a person when UAV falls to the ground, the probability of fatality when UAV strikes the person. We mathematically derive each probability to evaluate the ground risk of UAV operation. Also, the population density map, building to land ratio map, car traffic database is used to estimate the number of people exposed to collision with UAV. Finally, we assumed the operations of a UAV with two paths in Daejeon city and evaluate the ground risk of each UAV operations.

A study of the train traffic optimal control system in a circular metro line (도시형 순환 열차에서 운전 최적제어 시스템에 관한 연구)

  • Hong, Hyo-Sik;Ryu, Kwang-Gyun;Song, Noon-Suck
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.236-246
    • /
    • 2003
  • This paper is implemented a control algorithm in order to be stable and minimized to entire train traffic system at delayed case. Signal ing system is described wi th algebraic equations given for train headway, Discrete-event simulation principles are reviewed and a demonstration block signaling model using the technique is implemented. Train congestion at station entrance for short headway operation is demonstrated and the propagation of delays along a platform of trains from any imposed delay to the leading train is also shown. A rail way signaling system is by nature a distributed operation with event triggered at discrete intervals. Although the train kinematic variables of position, velocity, and acceleration are continually changing, the changes are triggered when the trains pass over section boundaries and arrive at signals and route switches. This paper deals with linear-mode1ing, stability and optimal control for the traffic on such metro line of the model is reconstructed in order to adapt the circuits. This paper propose optimal control laws wi th state feedback ensuring the stability of the modeled system for circuits. Simulation results show the benefit to be expected from an efficient traffic control. The main results are summarized as follows: 1. In this paper we develop a linear model describing the traffic for both loop lines, two state space equations have been analyzed. The first one is adapted to the situation where a complete nominal time schedule is available while second one is adapted when only the nominal time interval between trains is known, in both cases we show the unstability of the traffic when the proceeding train is delayed following properties, - They are easily implemented at law cost on existing lines. - They ensure the exponetial stability of loop system. 2. These control laws have been tested on a traffic simulation software taking into the non-linearites and the physical constraints on a metro line. By means of simulation, the efficiency of the proposed optimal control laws are shown.

  • PDF

Dynamic Traffic Information Provision and Dismissal Strategy for Before and After Traffic Incident (교통사고 전후 동적 정보 제공 및 해제 전략)

  • Jeon, Gyo-Seok;Kim, Tae-Wan;Lee, Hyun-Mi;Jang, Jeong-Ah
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.867-878
    • /
    • 2021
  • Recently, there has been active research on smart street lamps that can collect real-time traffic data and provide traffic information by attaching images and radars to road lighting facilities. Smart street light technology can detect, identify, and provide dense information compared to existing technologies. In order to effectively utilize the smart streetlight as a high-resolution information delivery medium, a branch-type operation strategy that is different from the existing centralized operation strategy is required. This study presents dynamic information delivery strategies, release strategies, and their criteria for various purposes in a spatial range, separated by the context before and after the occurrence of smart street lights-based accidents. Through this, it is expected that smart road lighting facilities can be used more effectively.

Study of control technical of cross load at New traffic system (신교통시스템의 교차로 제어기술연구)

  • Lee, Soo-Hwan;Park, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1175_1176
    • /
    • 2009
  • In comparison with different mass transportation systems, the streetcar is lower, both in speed and transportation capacity. However, it has the advantage of reducing the cost of construction, because it makes infrastructure simple, by using the road. It is proper in the city, where the population is few, to raise the efficiency of traffic. The convenience is high to passengers. On time accuracy and the commercial speed is influenced by operating condition. Generally that is organized into 21m degree in 6 quantity. All passengers in a streetcar are about 180 people. The maximum speed is 40~60km/h. When road traffic is considered, the speed can be reduced to 15km/h. To enhance the speed, the construction of a priority signaling system is necessary which is integrated with the road traffic operation information system. In order to develop a better Traffic Control System which is connected to a Traffic Control Center, a Priority Signaling System which incorporates Intersection Control Technics must be included.

  • PDF

Mining using Traffic Information Database (교통 정보 데이터베이스를 이용한 마이닝)

  • 이기성;박종천;김광휘
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.3
    • /
    • pp.309-320
    • /
    • 2001
  • According to the increasing of the cars, road traffic confused. If we estimate the traffic confusion use of statistical research, road traffic improved considerably. This paper analysis element that affected a expressway speed and investigate the mutual relation. For the accomplish it, we construct the DB for traffic of a expressway and applied a hypothesis to road traffic DB, we obtain the results from a various method with Data Mining operation.

  • PDF

Collision Probability md Traffic Processing Time Analysis for RFID System using FHSS Scheme (FHSS 방식을 채용한 RFID 시스템의 충돌 확률 및 트래픽 처리 시간 해석)

  • Cho, Hae-Keun;Lim, Yeon-June;Hwang, In-Kwan;Pyo, Cheol-Sig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1246-1252
    • /
    • 2006
  • In this paper, a collision probability, processing time and traffic capacity analysis algorithm for RFID system using random FHSS and synchronous FHSS is proposed. Service time, duty cycle, traffic intensity and additional delay time required for re-transmission due to collision are considered and the processing delay and frequency channel capacity are analyzed for the steady state operation of the system. The simulation results which show maximum capacity of the system and explain the accuracy of the algorithm are provided.

Analysis of the Effects of Scrambled Crosswalk Installation Depending on the Types of Intersections Using VISSIM (교차로 유형별 대각선횡단보도 설치효과 분석 (차량소통측면))

  • Jung, Doyoung;LEE, Dongmin;Jun, Jinwoo;HAN, Daecheol
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.71-81
    • /
    • 2017
  • PURPOSES : In this study, the effects of installation of diagonal crosswalks on traffic flow depending on the types of intersections are analyzed. METHODS : Scrambled crosswalks have advantages in the traffic safety. Therefore, a comparative analysis of the overall average delay before and after installation of the scrambled crosswalk was conducted using VISSIM. RESULTS : The overall average delay for the scrambled crosswalk decreased when the traffic volume ratio of the major to the minor street is 1: 6 in 2-by-1 and 3-by-1 types of intersections. The scrambled crosswalk improved efficiency of traffic operation in intersections: higher traffic volume for a major street, lower traffic volume for a minor street, and longer cross-distance for a major street. CONCLUSIONS:This study can be used to determine when a scrambled crosswalk should be installed to improve operational efficiency.

A Study on the Effect of Urban Freeway Traffic Control Strategies on Safety (도시고속도로 교통류 제어전략이 교통안전에 미치는 영향에 관한 연구)

  • 강정규
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.223-237
    • /
    • 1996
  • Based on the traffic and accident data collected on a 4.2km (2.6mile) section of Interstate highway 35W in Minneapolis the relationship between traffic operation variables and safety measures is investigated. An aggregate specification that could be integrated into an urban freeway safety prediction methodology is proposed as a multiple regression model. The specification includes lane occupancy and volume data, which are the control parameters commonly used because they can be measured in real time. The primary variables that appear to affect the safety of urban freeway are : vehicle-miles of travel, entrance ramp volumes and the dynamic effect of queue building. The potential benefits of freeway traffic control strategies on freeway safety are also investigated via a simulation study. It was concluded that improvement of urban freeway safety is achievable by traffic control strategies which homogenize traffic conditions areound critical occupancy values.

  • PDF

Combined Traffic Signal Control and Traffic Assignment : Algorithms, Implementation and Numerical Results

  • Lee, Chung-Won
    • Proceedings of the KOR-KST Conference
    • /
    • 2000.02a
    • /
    • pp.89-115
    • /
    • 2000
  • Traffic signal setting policies and traffic assignment procedures are mutually dependent. The combined signal control and traffic assignment problem deals with this interaction. With the total travel time minimization objective, gradient based local search methods are implemented. Deterministic user equilibrium is the selected user route choice rule, Webster's delay curve is the link performance function, and green time per cycle ratios are decision variables. Three implemented solution codes resulting in six variations include intersections operating under multiphase operation with overlapping traffic movements. For reference, the iterative approach is also coded and all codes are tested in four example networks at five demand levels. The results show the numerical gradient estimation procedure performs best although the simplified local searches show reducing the large network computational burden. Demand level as well as network size affects the relative performance of the local and iterative approaches. As demand level becomes higher, (1) in the small network, the local search tends to outperform the iterative search and (2) in the large network, vice versa.

  • PDF