DOI QR코드

DOI QR Code

저고도 무인기 교통관리를 위한 지상 충돌 위험 모델 개발

Ground Risk Model Development for Low Altitude UAV Traffic Management

  • 김연실 (한국항공우주연구원 무인기연구부)
  • Kim, Youn-sil (Unmanned Aircraft System Research Division, Korea Aerospace Research Institute)
  • 투고 : 2020.11.02
  • 심사 : 2020.12.14
  • 발행 : 2020.12.30

초록

본 연구에서는 무인기가 운용 중에 고장이 발생하여 추락함으로써 발생할 수 있는 지상 충돌 위험을 정량적으로 계산하기 위한 지상 충돌 위험 모델을 개발하였다. 지상 충돌 위험 모델은 무인기 고장 확률, 무인기가 지상에 추락하여 사람과 충돌할 확률, 무인기가 사람과 충돌했을 때 인명 피해가 발생할 확률을 이용하여 계산된다. 본 연구에서는 무인기 운용의 지상 충돌 위험을 평가하기 위해 수학적으로 각 확률을 유도하였다. 또한 무인기와의 충돌에 노출되는 인구수를 추정하기 위해 인구 밀도 맵, 건폐율 맵, 차량 교통량 데이터베이스를 활용하였다. 최종적으로 대전에서 두 가지 무인기 경로에 대한 운영을 가정하여 각 무인기 경로에 대한 지상 충돌 위험을 평가하였다.

In this paper, we develop the ground risk model of unmanned aerial vehicle (UAV) operation to quantify the ground risk when the UAV falls to the ground during the intended operation in case of UAV failure. The ground risk is computed by using the UAV failure probability, the probability of impact a person when UAV falls to the ground, the probability of fatality when UAV strikes the person. We mathematically derive each probability to evaluate the ground risk of UAV operation. Also, the population density map, building to land ratio map, car traffic database is used to estimate the number of people exposed to collision with UAV. Finally, we assumed the operations of a UAV with two paths in Daejeon city and evaluate the ground risk of each UAV operations.

키워드

참고문헌

  1. National Archives. A point in time eCFR system [Internet]. Available: https://ecfr.federalregister.gov/.
  2. CORUS U-space Concept of Operations, EUROCONTROL, Edition 03.00.02, Oct. 2019.
  3. JARUS Guidelines on Specific Operations Risk Assessment(SORA), Joint Authorities for Rulemaking of Unmanned Systems, JAR-DEL-WG6-D.04, Jan. 2019.
  4. J. Breunig, J. Forman, S. Sayed, and L. Audenaerd, Modeling Risk Based Approach for Small Unmanned Aircraft Systems. MITRE CORP MCLEAN VA MCLEAN, Virginia, Technical Report AD1107953, 2018.
  5. A. la Cour-Harbo, "Ground impact probability distribution for small unmanned aircraft in ballistic descent," in Proceeding of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens: Greece, pp. 1442-1451, 2020.
  6. A. la Cour-Harbo, "Quantifying risk of ground impact fatalities for small unmanned aircraft," Journal of Intelligent & Robotic Systems, Vol. 93, No. 1-2, pp. 367-384, 2019. https://doi.org/10.1007/s10846-018-0853-1
  7. S. Primatesta, R. Alessandro, and A. la Cour-Harbo, "Ground risk map for unmanned aircraft in urban environments," Journal of Intelligent & Robotic Systems, Vol. 97, No. 3, pp.489-509, 2020. https://doi.org/10.1007/s10846-019-01015-z
  8. H. Lee, L. A. Meyn, and S. Kim, "Probabilistic safety assessment of unmanned aerial system operations," Journal of Guidance, Control, and Dynamics, Vol. 35, No. 2, pp. 610-616, 2013.
  9. S. H. Kim, "Third-party risk analysis of small unmanned aircraft systems operations," Journal of Aerospace Information Systems, Vol. 17, No. 1, pp. 24-35, 2020. https://doi.org/10.2514/1.i010763
  10. Korea Meteorological Administration. Weather Data Opening Portal [Internet]. Available: https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36
  11. Y. S. Kim, A. Cho, and J. W. Bae, "Navigation performance derivation for safe separation of UAVs for local-area UAS traffic management based on ground risk map", in Proceedings of ION GNSS+ 2020, Virtual, pp. 236-261, 2020.
  12. [Internet]. Available: http://map.ngii.go.kr/ms/map/NlipMap.do?tabGb=statsMap
  13. [Internet]. Available: https://viewt.ktdb.go.kr/cong/map/index_sidoCodelist.do