• Title/Summary/Keyword: Traffic control

Search Result 2,925, Processing Time 0.038 seconds

Performance Analysis of Traffic Shaper for an MPEG Video Source (MPEG 비디오원을 대상으로 한 트래픽 쉐이퍼의 성능 분석)

  • Lee, S.C.;Lee, M.Y.;Hong, J.S.;Lie, C.H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.23-37
    • /
    • 1997
  • In this paper, performance analysis of video traffic shaper for Motion Picture Experts Group (MPEG) video traffic in on ATM network are investigated. Traffic shaping for MPEG video traffic is proposed as a traffic control function in ATM networks. The proposed shaper smoothes video traffics by controling the output rate of the buffer, which is placed in an MPEG source, according to I,B,P frame sequences of MPEG. In performance analysis of an video traffic shaper, a periodic botch arrival model is suggested to describe cell streams in a frame of MPEG video traffic. The queueing model which has periodic independent botch arrival and periodic deterministic service time is used to obtain the cell loss ratio, the mean cell delay, and the measure of smoothing effect. Simulation results are used to validate this queueing model. The cell loss performance of ATM multiplexer is measured by simulation study with real MPEG-1 data. From the viewpoint of traffic load, the cell loss ratio is observed to be considerably high, which is considered to result from the burstiness of MPEG video traffic. As a result, it is shown that the shaping decreases cell loss ratio of multiplexer. The results of this paper can be employed to establish a basic guideline in the implementation of a traffic control scheme and the design of ATM multiplexer for MPEG video traffic.

  • PDF

Design and Implementation of Rate-Based Traffic Controller for Performance Improvement of FA-Networks Employing LonWorks (LonWorks를 이용한 공장자동화용 네트웍의 성능향상을 위한 전송률기반 트래픽제어기의 설계와 구현)

  • Kim, Byoung-Hee;Cho, Kwang-Hyun;Park, Kyoung-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.313-319
    • /
    • 2000
  • As the interest of flexible manufacturing systems and computer integrated manufacturing systems increase, the distribution of centralized control systems using industrial control networks is getting more attention. In this paper, we investigate the rate-based traffic control of industrial control networks to improve the performance regarding the throughput, fairness, and error rates. Especially, we consider the protocol of Lon-$Works^{(TM)}$ which consists of all OSI 7-layers and supports various communication media at a low cost. Basically, the proposed rate-based traffic control system is closed loop by utilizing the feedback channel errors, which shows improved performance when compared with other industrial control networks commonly operated in open loop. To this end, an additional network node called monitoring node is introduced to check the channel status without increasing the channel load. The Proposed control loop is in effect whenever the feedback channel error becomes greater than an admittable value. We demonstrate the improved performance of the controlled network system in view of throughput and fairness measures by implementing the lab-scale network system based on LonWorks and through the experimentation upon it.

  • PDF

A study on the autonomous decentralized train operation control system (자율분산형 열차운행제어체계에 관한 연구)

  • Kim Young-Hoon;Hong Soon-Heum;Jung Tae-Un;Ahn Jin;Kim Ryu-ho;Park Sung-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.528-533
    • /
    • 2004
  • The purpose of this thesis is to construct the autonomous decentralized train traffic management structure using techniques of Autonomous Decentralized System. Currently, a method of train traffic control is making use of CTC(Centralized Traffic Control). Its operation method is divided into the remote mode and the local mode. The classified basis is according to the control authority of install signals in track side. In most cases, a large scale station is operated by the local mode. Because of dispatchers in center can not control the shunting works influence on the main route. In order to solve these problem s, we analyzed a current operation condition and system requirements. Moreover, this thesis is constructing autonomous decentralized train traffic management structure. Finally, this research proposed that interface with CTC and step-by-step construction.

  • PDF

A traffic control system to manage bandwidth usage in IP networks supporting Differentiated Service (차별화서비스를 제공하는 IP네트워크에서 대역폭관리를 위한 트래픽 제어시스템)

  • 이명섭;박창현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3B
    • /
    • pp.325-338
    • /
    • 2004
  • As the recent rapid development of internet technology and the wide spread of multimedia communication, massive increase of network traffic causes some problems such as the lack of network paths and the bad quality of service. To resolve these problems, this paper presents a traffic control agent that can perform the dynamic resource allocation by controlling traffic flows on a DiffServ network. In addition, this paper presents a router that can support DiffServ on Linux to support selective QoS in IP network environment. To implement a method for selective traffic transmission based on priority on a DiffServ router, this paper changes the queuing discipline in Linux, and presents the traffic control agent so that it can efficiently control routers, efficiently allocates network resources according to service requests, and relocate resources in response to state changes of the network. Particularly for the efficient processing of Assured Forwarding(AF) Per Hop Behavior(PHB), this paper proposes an ACWF$^2$Q$^{+}$ packet scheduler on a DiffServ router to enhance the throughput of packet transmission and the fairness of traffic services.s.

Development and Evaluation of a Left-Turn Actuated Traffic Signal Control Strategy using Image Detectors (영상검지기를 이용한 좌회전 감응식 신호제어전략 개발)

  • Eun, Ji-Hye;O, Yeong-Tae;Yun, Il-Su;Lee, Cheol-Gi;Kim, Nam-Seon;Han, Ung-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.111-121
    • /
    • 2011
  • This paper discusses a method for optimizing the semi-actuated traffic signal control system by adjusting the initial interval according to the number of vehicles waiting for the green light in the actuated phase. We also present a Left-Turn actuated traffic signal control strategy that examines the vehicular noise in the detection area and determines the phase extension and the gap-out. In order to detect the vehicles in real-time, an image detector's Video Image Tracking technology was adopted. A 'Zone in Zone'method was implemented, and the image detection area is segmented into three zones: 1) Zone1 for verifying a vehicles obligatory presence, 2) Zone2 for counting the standby vehicles, and 3) Zone3 for examining the number of vehicles that have passed. The on-site assessment of the Left Turn Actuated Control is carried out using CORSIM, and the results show that the Control Delay decreased by 23.10%, 15.06%, and 4.34% compared to the delays resulted from pre-timed control, semi-actuated control-1 and semi-actuated control-2 traffic signal control systems respectively. The Queue Time also decreased by 36.24%, 20.10% and the Total Time by 14.36%, 7.02% for the same scenario. Which clearly demonstrates the operational efficiency. A sensitivity analysis reveals that the improvement from the propose traffic control strategy tends to increase as the through traffic volume reaches a saturated condition and the left-turn traffic volume decreases.

Media Access Scheme for Achieving an Effective Traffic Control Mechanism and Energy Efficiency in Sensor Networks (센서 네트워크에서 효과적인 트래픽 제어 방법과 에너지 효율성을 고려한 Media Access 기법)

  • Min Byung-Ung;Kim Dong-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1060-1064
    • /
    • 2006
  • Data collected by sensors in field are transmitted to the base station gathering all of data. Because sensors have to gather data in surroundings and periodically transmit data to the base station, it makes energy consumed much. In this paper, we mose the scheme that is to avoid traffic congestion with achievement of energy efficiency, so collected data is transmitted efficiently. This is to adjust transmission rate differently in case of increasing or decreasing traffic and minimize the energy consumption with setting ideal options up basic CSMA(Carrier Sense Multiple Access) protocol in each sensor. Through the simulation, we find the ideal CSMA options and apply the proposed scheme of traffic control mechanism to them and analyze them, then show energy efficiency and effective traffic control mechanism.

A Practical Connection Admission Control Scheme in ATM Networks (ATM망에서 실용적 연결수락제어 기법)

  • Kang, Koo-Hong;Park, Sang-Jo
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.2
    • /
    • pp.181-187
    • /
    • 2002
  • Connection admission control(CAC), which decides whether or not to accept a new call request, is one of the most Important preventive congestion control techniques in asynchronous transfer mode(ATM) networks. To develop a practical CAC scheme, first we propose a "Modified Cell Loss Probability MP${\nu}"$, which is based on "Virtual Cell Loss Probability P${\nu}"$, taking into account mean burst duration of input traffic source and buffer size in ATM networks. MP${\nu}"$ computes more accurate cell loss probability than P${\nu}"$ without increasing computational complexity, since P${\nu}"$ is formulated simply form the maximum and the average cell rate of input traffic. P${\nu}"$ is overestimated as compared to the real cell loss probability when the mean burst duration is relatively small to the buffer capacity. Then, we Propose a CAC scheme, based on "Modified Virtual Bandwidth(MVB)" method, which may individualize the cell loss probabilities in heterogeneous traffic environments. For the proposed approach, we define the interference intensity to identify interferences between heterogeneous traffic sources and use it as well as MP${\nu}"$ to compute MVB. Our approach is well suitable for ATM networks since it provides high bandwidth utilization and guarantees simple and real time CAC computation for heterogeneous traffic environments.heterogeneous traffic environments.

Effect of Maritime Traffic Control Radar Interference by a small number of Wind Turbines (소수의 풍력발전기에 의한 해상관제 레이더 간섭 영향)

  • Oh, Seongwon;Park, Tae-Yong
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.236-241
    • /
    • 2021
  • This paper presents a methodology to analyze the interference of maritime traffic control radar by wind turbines installed in the sea, and the interference result of the maritime traffic control radars by a small number of wind turbines installed in sea near Gunsan port (Gunsan vessel traffic services). A ray based electromagnetic analysis software is used to analyze the interference. The geographic information system map containing altitude data, drawing of wind turbines, and sea with waves are imported to the software to analyze the effect of the terrain and the wind turbines. According to the analysis, a small number of wind turbines, not large scale wind farms, has no severe impact on the operation of the radar.

Performance Comparison of Signalized Intersections Analysis Tools in Estimating Control Delays (신호교차로 분석도구별 제어지체 산출 성능 비교 연구)

  • Yun, Ilsoo;Oh, Cheol;Ahn, Hyunkyung;Kim, Kyunghyun;Han, Eum;Kang, Nam Won;Yoon, Jung Eun
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.109-119
    • /
    • 2014
  • PURPOSES : The control delay in seconds per vehicle is the most important traffic operational index to evaluate the level of service of signalized intersections. Thus, it is very critical to calculate accurate control delay because it is used as a basic quantitative evidence for decision makings regarding to investments on traffic facilities. The control delay consists of time-in-queue delay, acceleration delay, and deceleration delay so that it is technically difficult to directly measure it from fields. Thus, diverse analysis tools, including CORSIM, SYNCHRO, T7F, VISTRO, etc. have been utilized so far. However, each analysis tool may use a unique methodology in calculating control delays. Therefore, the estimated values of control delays may be different by the selection of an analysis tool, which has provided difficulties to traffic engineers in making solid judgments. METHODS : This study was initiated to verify the feasibility of diverse analysis tools, including HCM methodology, CORSIM, SYNCHRO, T7F, VISTRO, in calculating control delays by comparing estimated control delays with that measured from a field. RESULTS : As a result, the selected tools produced quite different values of control delay. In addition, the control delay value estimated using a calibrated CORSIM model was closest to that measured from the field. CONCLUSIONS : First, through the in-depth experiment, it was explicitly verified that the estimated values of control delay may depend on the selection of an analysis tool. Second, among the diverse tools, the value of control delay estimated using the calibrated microscopic traffic simulation model was most close to that measured from the field. Conclusively, analysts should take into account the variability of control delay values according to the selection of a tool in the case of signalized intersection analysis.

A Study on Performance Enhancement of the Rate Scheme for ABR Traffic on ATM Networks (ATM 망에서 ABR 트래픽을 위한 Rate 기법이 성능 향상 연구)

  • Lee, Yo-Seob;Yu, Eun-Jin;Chang, Hyun-Hee;Pang, Hea-Ja;Jun, Moon-Seog
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2605-2614
    • /
    • 1997
  • Recently, we are concerned with effective service according as the demand increase for high speed data service. We can use high speed transfer and multiple traffic service on the ATM networks, so we concentrate on preventive-control method rather than reactive-control one. But it is possible to have low QoS and traffic congestion due to unpredictable traffic and burst traffic. Specially, ATM Forum has discussed to standardization of traffic management of ABR(Available Bit Rate) service. Because ABR traffic controls the flow of traffic using the feedback information and the current status information of cell, it allocates bandwidth systematically and dynamically to the user. In this paper, we propose a new Rate-based flow control scheme which adapted double threshold buffer idea. The double threshold buffer controls the traffic control by establishing two threshold in buffer.

  • PDF