• 제목/요약/키워드: Traffic Volume Forecast

검색결과 30건 처리시간 0.021초

동북아시아 환적물동량 예측모델 연구 (Forecasting Model of Container Transshipment Traffic Volume in Northeast Asia)

  • 이병철;김윤배
    • 대한산업공학회지
    • /
    • 제37권4호
    • /
    • pp.297-303
    • /
    • 2011
  • Major ports in Northeastern Asia engage in fierce competition to attract transshipment traffic volume. Existing time series analyses for analyzing port competition relationships examine the types of competition and relations through the signs of coefficients in cointegration equations using the transshipment traffic volume results. However, there are cases for which analyzing competing relationships is not possible based on the results of the transshipment traffic volume data differences and limitations in the forecasting of traffic volume. Accordingly, we used the Lotka-Volterra (L-V) model,also known as the ecosystem competitive relation model, to analyze port competition relations for the long-term forecast of South Korean transshipment traffic volume.

시계열 분석을 통한 해상교통량 예측 방안 (A Forecast Method of Marine Traffic Volume through Time Series Analysis)

  • 유상록;박영수;정중식;김철승;정재용
    • 해양환경안전학회지
    • /
    • 제19권6호
    • /
    • pp.612-620
    • /
    • 2013
  • 본 연구는 기존의 회귀분석과는 달리 금융, 경제, 무역 등 다양한 분야의 수요 예측에 널리 적용되고 있는 시계열 분석 방법을 시도하였다. 인천항의 1996년 1월부터 2013년 6월까지 입항 척수 자료를 바탕으로 정상성 검증, 모형의 식별, 모수의 추정, 진단 과정을 거쳐 장래 해상교통량을 예측하였다. 2014년 1월부터 2015년 12월까지 예측한 결과 2월달의 교통량이 다른 달 보다 적게 예측된 반면, 1월달의 교통량은 다른 달 보다 많을 것으로 나타났다. 또한 인천항은 지수평활법 보다 ARIMA 모형이 적합하며, 계절에 따라 월별 교통량의 차이를 보이는 것을 알 수 있다. 본 연구는 시계열 분석으로 장래 교통량을 월별로 예측하였다는 점에서 의의가 있다. 또한 기존의 회귀분석으로 예측한 장래 해상교통량보다 시계열 분석으로 예측한 장래 해상교통량이 더 적합한 모형인 것으로 판단된다.

시계열 분석을 활용한 고속도로 교통류 예측 (Forecasting of Motorway Traffic Flow based on Time Series Analysis)

  • 윤병조
    • 도시과학
    • /
    • 제7권1호
    • /
    • pp.45-54
    • /
    • 2018
  • The purpose of this study is to find the factors that reduce prediction error in traffic volume using highway traffic volume data. The ARIMA model was used to predict the day, and it was confirmed that weekday and weekly characteristics were distinguished by prediction error. The forecasting results showed that weekday characteristics were prominent on Tuesdays, Wednesdays, and Thursdays, and forecast errors including MAPE and MAE on Sunday were about 15% points and about 10 points higher than weekday characteristics. Also, on Friday, the forecast error was high on weekdays, similar to Sunday's forecast error, unlike Tuesday, Wednesday, and Thursday, which had weekday characteristics. Therefore, when forecasting the time series belonging to Friday, it should be regarded as a weekly characteristic having characteristics similar to weekend rather than considering as weekday.

신경망을 이용한 컨테이너 물동량 예측에 관한 연구 (A Study on the Forecasting of Container Volume using Neural Network)

  • 박성영;이철영
    • 한국항해항만학회지
    • /
    • 제26권2호
    • /
    • pp.183-188
    • /
    • 2002
  • 컨테이너 물동량 예측은 항만과 항만의 개발에 있어서 매우 중요하다. 일반적으로 이동평균법, 지수평활법, 회귀분석과 같은 통계적인 방법들은 물동량 예측에서 많이 사용되어졌다. 하지만, 컨테이너 물동량 예측에 영향을 주는 여러 가지 요소들을 고려해 보면 다중병렬처리시스템인 신경망을 이용하는 것이 효과적이다. 본 연구는 신경망의 역전파학습알고리즘을 이용하여 컨테이너 활동량을 예측하였다. 신경망을 이용하여 영향력 있는 요소들을 선별하였으며, 선별된 요소들을 이용하여 물동량 예측을 하였다. 또한 제안된 신경망 알고리즘과 통계적인 방법의 예측들을 비교하였다.

강원도에서 적설에 의한 일반국도 교통 특성 분석 (Analysis of Traffic Characteristics of General National Roads by Snowfall in Gangwon-do)

  • 조은수;권태영;김현욱;김규랑;김승범
    • 대기
    • /
    • 제31권2호
    • /
    • pp.157-170
    • /
    • 2021
  • To investigate the effect of snowfall on the traffic of general roads in Gangwon-do, case analysis was performed in Gangneung, Pyeongchang, and Chuncheon using ASOS (Automated Synoptic Observing System) snowfall data and VDS (Vehicle Detector System) traffic data. First, we analyzed how much the traffic volume and speed decrease in snowfall cases on regional roads compared to non-snow cases, and the characteristics of monthly reduction due to snowfall were investigated. In addition, Pearson correlation analysis and regression analysis were performed to quantitatively grasp the effect of snowfall on traffic volume and speed, and sensitivity tests for snowfall intensity and cumulative snowfall were performed. The results showed that the amount of snowfall caused decrease both in the traffic volume and speed from usual (non-snowfall) condition. However, the trend was different by region: The decrease rate in traffic volume was in the order of Gangneung (17~22%), Chuncheon (14~17%), and Pyeongchang (11~14%). The decrease rate in traffic speed was in the order of Chuncheon (9~10%), Gangneung (8~9%), Pyeongchang (5~6%). No significant results were found in the monthly decrease rate analysis. In all regions, traffic volume and speed showed a negative correlation with snowfall. It was confirmed that the greater the amount of traffic entering the road, the greater the slope of the trend line indicating the change in snowfall due to the traffic volume. As a result of the sensitivity test for snowfall intensity and cumulative snowfall, the snowfall information at intervals of 6-hours was the most significant.

장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측을 위한 시계열 모형 연구 (A Study on the Short Term Internet Traffic Forecasting Models on Long-Memory and Heteroscedasticity)

  • 손흥구;김삼용
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.1053-1061
    • /
    • 2013
  • 본 논문은, 장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측 모형을 제안하고자 한다. 트래픽 과부하를 대비하기 위해서, 트래픽 용량은 트래픽의 예측치와 트래픽의 변동 크기에 따라 트래픽의 최대용량을 설정하여야 한다. 이를 위하여 교내 트래픽 자료 중 교내로 들어오는 트래픽과 교외로 나가는 트래픽에 이분산성과 장기기억 모형의 유용성을 확인하였다. 이에 대하여 AR-GARCH 모형, ARMA-GARCH 모형과 장기기억모형인 Fractional ARIMA와 장기기억과 이분산성을 고려한 Fractional ARMA-GARCH 모형을 적용하여 모형의 예측성능을 비교하였다.

A Study on forecasting container volume of port using SD and ARIMA

  • Kim, Jong-Kil;Pak, Ji-Yeong;Wang, Ying;Park, Sung-Il;Yeo, Gi-Tae
    • 한국항해항만학회지
    • /
    • 제35권4호
    • /
    • pp.343-349
    • /
    • 2011
  • The forecasting of container volume which is the basis of port logistics facilities expansion has a great influence on development of an port. Based on this importance, various previous studies have presented methodology on container volume forecasting. The results of many previous studies pointed out the limitations of future forecasting based on past container volume and emphasized that more various factors should be considered to compensate this. Taking notice of this point, this study forecasted future container volume by using ARIMA model, time series analysis and System Dynamics (SD) method, a dynamic analysis technique and performed the comparative review with the forecast of the Ministry of Land, Transport and Maritime affairs. Recently with rapid changes in economic and social environment, the non-linear change tendency for forecasting container traffic is presented as a new alternative to the country.

시계열 모형을 이용한 광양항의 컨테이너 물동량 및 교통량 예측 (The Forecast of the Cargo Transportation and Traffic Volume on Container in Gwangyang Port, using Time Series Models)

  • 김정훈
    • 한국항해항만학회지
    • /
    • 제32권6호
    • /
    • pp.425-431
    • /
    • 2008
  • 본 연구에서는 광양항의 장래 컨테이너 물동량 및 교통량을 일변량 시계열모형을 통해 예측하고, 컨테이너 선박교통량을 산출하였다. 광양항의 물돌량과 입항 척당 물동량의 시계열 모형은 모두 추세와 계절적 변동이 있는 Winters 가법 모형으로 최적합 되었다. 광양항의 컨테이너 물동량은 2007년과 비교하여 2011년과 2015년에 각각 7.4%, 16.2% 가량 증가하여 약 2,756천TEU, 4,470천TEU가 될 것으로 예측되었다. 또한 2011년과 2015년의 컨테이너 입항 척당 평균 물동량은 2007년 대비 약 30.3%, 54.6% 증가하여 각각 675TEU, 801TEU가 될 것으로 예측되었다. 광양항에 대한 컨테이너 선박의 교통량은 2011년과 2015년에 각각 4,078척, 5,921척이 될 것으로 추정되었다.

SARIMA 알고리즘을 이용한 교통량 보정 및 예측 (A Study on the Traffic Volume Correction and Prediction Using SARIMA Algorithm)

  • 한대철;이동우;정도영
    • 한국ITS학회 논문지
    • /
    • 제20권6호
    • /
    • pp.1-13
    • /
    • 2021
  • 본 연구에서는 도로교통분야의 계획, 설계, 유지관리, 연구 등 다양한 목적으로 활용되고 있는 교통량 데이터의 정확도 확보를 위해 시계열 분석 기법을 적용하여 교통량 데이터의 보정 및 예측을 수행하였다. 기존 알고리즘의 경우 주기성 및 계절성이 강하거나 불규칙한 데이터에 한계를 보이고 있어 교통량 데이터와 같은 자료에 적용하기에는 한계가 있다. 이러한 한계점을 극복하고 보완하기 위해 ARIMA 모형에 자기상관 모형인 SAR(Seasonal Auto Regressive)과 계절 이동평균 모형인 SMA(Seasonal Moving Average)가 결합된 분석 기법인 SARIMA 모형을 적용하였다. 분석결과 최적 파라미터 조합인 SARIMA(4,1,3)(4,0,3) 12 모형을 활용한 교통량 예측 결과 평균 85% 정도의 우수한 성능을 보였다. 본 연구를 통해서 교통량 데이터의 결측 발생 시 교통량 보정 및 예측의 정확도를 높일 수 있으며, 교통량 데이터 외에도 계절성에 영향을 받는 시계열 데이터에 적용이 가능하다.

'아파트단지' 교통소음측정방안에 관한 연구 - 강북 강변도로 사례를 중심으로 - (An Analysis of the Traffic Noise Measurement Plans of 'Apartment Complexes' - A Case on the North Riverside Expressway in Seoul -)

  • 강준모;이성경
    • 대한토목학회논문집
    • /
    • 제26권1D호
    • /
    • pp.1-11
    • /
    • 2006
  • 본 연구에서는 소음에 대한 이론적 연구와 도로교통소음에 관하여 살펴보았다. 그리고 국내의 도로소음예측모델을 다른 선진국의 모델과 비교 분석하여 예측인자의 적용현황 및 적용상의 문제점을 도출하였다. 일반식 정립을 위한 사례연구에서는 국립환경연구원에서 제안한 식에 적용한 예측치와 실측치를 비교하여 국내의 도로교통소음 예측모델의 개선점을 살펴보았다. 또한 소음에 대한 통행량과 속도의 관계를 고찰해보기 위해서, 이 식에서 주요 요인으로 사용한 통행량과 속도의 두 요인 중에서 무엇이 더 큰 영향을 가지는지를 회귀분석을 통하여 속도가 통행량보다 더 밀접한 관계가 있음을 알 수 있었다. 따라서 도로소음을 줄이기 위해서는 차량의 통행량의 고려도 중요하지만 차량의 속도 규제가 더욱 중요하다고 볼 수 있다. 지구보정치 도출을 위한 사례연구에서는 도로교통소음이 단지내에 공간적으로 미치는 영향을 분석하고자 하였다. 세 아파트 단지의 도로교통소음을 측정하여 비교 분석함으로써 도로교통소음은 단지내에 평면적 입체적으로 영향을 미치고 있음을 확인하였다. 즉, 소음원에서 거리가 멀어질수록 소음의 크기가 적어지고, 높은 위치로 올라갈수록 소음의 크기는 증가하다가 어느 정도 높이 이상에서는 다시 소음의 크기는 줄어들고, 소음의 방향에 장애물이 있을 경우 소음의 영향이 줄어들었다. 따라서 단지내에 소음이 미치는 영향을 이러한 점들을 고려하여 공간적으로 파악한 단지 설계를 해야 한다.