Major ports in Northeastern Asia engage in fierce competition to attract transshipment traffic volume. Existing time series analyses for analyzing port competition relationships examine the types of competition and relations through the signs of coefficients in cointegration equations using the transshipment traffic volume results. However, there are cases for which analyzing competing relationships is not possible based on the results of the transshipment traffic volume data differences and limitations in the forecasting of traffic volume. Accordingly, we used the Lotka-Volterra (L-V) model,also known as the ecosystem competitive relation model, to analyze port competition relations for the long-term forecast of South Korean transshipment traffic volume.
본 연구는 기존의 회귀분석과는 달리 금융, 경제, 무역 등 다양한 분야의 수요 예측에 널리 적용되고 있는 시계열 분석 방법을 시도하였다. 인천항의 1996년 1월부터 2013년 6월까지 입항 척수 자료를 바탕으로 정상성 검증, 모형의 식별, 모수의 추정, 진단 과정을 거쳐 장래 해상교통량을 예측하였다. 2014년 1월부터 2015년 12월까지 예측한 결과 2월달의 교통량이 다른 달 보다 적게 예측된 반면, 1월달의 교통량은 다른 달 보다 많을 것으로 나타났다. 또한 인천항은 지수평활법 보다 ARIMA 모형이 적합하며, 계절에 따라 월별 교통량의 차이를 보이는 것을 알 수 있다. 본 연구는 시계열 분석으로 장래 교통량을 월별로 예측하였다는 점에서 의의가 있다. 또한 기존의 회귀분석으로 예측한 장래 해상교통량보다 시계열 분석으로 예측한 장래 해상교통량이 더 적합한 모형인 것으로 판단된다.
The purpose of this study is to find the factors that reduce prediction error in traffic volume using highway traffic volume data. The ARIMA model was used to predict the day, and it was confirmed that weekday and weekly characteristics were distinguished by prediction error. The forecasting results showed that weekday characteristics were prominent on Tuesdays, Wednesdays, and Thursdays, and forecast errors including MAPE and MAE on Sunday were about 15% points and about 10 points higher than weekday characteristics. Also, on Friday, the forecast error was high on weekdays, similar to Sunday's forecast error, unlike Tuesday, Wednesday, and Thursday, which had weekday characteristics. Therefore, when forecasting the time series belonging to Friday, it should be regarded as a weekly characteristic having characteristics similar to weekend rather than considering as weekday.
컨테이너 물동량 예측은 항만과 항만의 개발에 있어서 매우 중요하다. 일반적으로 이동평균법, 지수평활법, 회귀분석과 같은 통계적인 방법들은 물동량 예측에서 많이 사용되어졌다. 하지만, 컨테이너 물동량 예측에 영향을 주는 여러 가지 요소들을 고려해 보면 다중병렬처리시스템인 신경망을 이용하는 것이 효과적이다. 본 연구는 신경망의 역전파학습알고리즘을 이용하여 컨테이너 활동량을 예측하였다. 신경망을 이용하여 영향력 있는 요소들을 선별하였으며, 선별된 요소들을 이용하여 물동량 예측을 하였다. 또한 제안된 신경망 알고리즘과 통계적인 방법의 예측들을 비교하였다.
To investigate the effect of snowfall on the traffic of general roads in Gangwon-do, case analysis was performed in Gangneung, Pyeongchang, and Chuncheon using ASOS (Automated Synoptic Observing System) snowfall data and VDS (Vehicle Detector System) traffic data. First, we analyzed how much the traffic volume and speed decrease in snowfall cases on regional roads compared to non-snow cases, and the characteristics of monthly reduction due to snowfall were investigated. In addition, Pearson correlation analysis and regression analysis were performed to quantitatively grasp the effect of snowfall on traffic volume and speed, and sensitivity tests for snowfall intensity and cumulative snowfall were performed. The results showed that the amount of snowfall caused decrease both in the traffic volume and speed from usual (non-snowfall) condition. However, the trend was different by region: The decrease rate in traffic volume was in the order of Gangneung (17~22%), Chuncheon (14~17%), and Pyeongchang (11~14%). The decrease rate in traffic speed was in the order of Chuncheon (9~10%), Gangneung (8~9%), Pyeongchang (5~6%). No significant results were found in the monthly decrease rate analysis. In all regions, traffic volume and speed showed a negative correlation with snowfall. It was confirmed that the greater the amount of traffic entering the road, the greater the slope of the trend line indicating the change in snowfall due to the traffic volume. As a result of the sensitivity test for snowfall intensity and cumulative snowfall, the snowfall information at intervals of 6-hours was the most significant.
본 논문은, 장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측 모형을 제안하고자 한다. 트래픽 과부하를 대비하기 위해서, 트래픽 용량은 트래픽의 예측치와 트래픽의 변동 크기에 따라 트래픽의 최대용량을 설정하여야 한다. 이를 위하여 교내 트래픽 자료 중 교내로 들어오는 트래픽과 교외로 나가는 트래픽에 이분산성과 장기기억 모형의 유용성을 확인하였다. 이에 대하여 AR-GARCH 모형, ARMA-GARCH 모형과 장기기억모형인 Fractional ARIMA와 장기기억과 이분산성을 고려한 Fractional ARMA-GARCH 모형을 적용하여 모형의 예측성능을 비교하였다.
Kim, Jong-Kil;Pak, Ji-Yeong;Wang, Ying;Park, Sung-Il;Yeo, Gi-Tae
한국항해항만학회지
/
제35권4호
/
pp.343-349
/
2011
The forecasting of container volume which is the basis of port logistics facilities expansion has a great influence on development of an port. Based on this importance, various previous studies have presented methodology on container volume forecasting. The results of many previous studies pointed out the limitations of future forecasting based on past container volume and emphasized that more various factors should be considered to compensate this. Taking notice of this point, this study forecasted future container volume by using ARIMA model, time series analysis and System Dynamics (SD) method, a dynamic analysis technique and performed the comparative review with the forecast of the Ministry of Land, Transport and Maritime affairs. Recently with rapid changes in economic and social environment, the non-linear change tendency for forecasting container traffic is presented as a new alternative to the country.
본 연구에서는 광양항의 장래 컨테이너 물동량 및 교통량을 일변량 시계열모형을 통해 예측하고, 컨테이너 선박교통량을 산출하였다. 광양항의 물돌량과 입항 척당 물동량의 시계열 모형은 모두 추세와 계절적 변동이 있는 Winters 가법 모형으로 최적합 되었다. 광양항의 컨테이너 물동량은 2007년과 비교하여 2011년과 2015년에 각각 7.4%, 16.2% 가량 증가하여 약 2,756천TEU, 4,470천TEU가 될 것으로 예측되었다. 또한 2011년과 2015년의 컨테이너 입항 척당 평균 물동량은 2007년 대비 약 30.3%, 54.6% 증가하여 각각 675TEU, 801TEU가 될 것으로 예측되었다. 광양항에 대한 컨테이너 선박의 교통량은 2011년과 2015년에 각각 4,078척, 5,921척이 될 것으로 추정되었다.
본 연구에서는 도로교통분야의 계획, 설계, 유지관리, 연구 등 다양한 목적으로 활용되고 있는 교통량 데이터의 정확도 확보를 위해 시계열 분석 기법을 적용하여 교통량 데이터의 보정 및 예측을 수행하였다. 기존 알고리즘의 경우 주기성 및 계절성이 강하거나 불규칙한 데이터에 한계를 보이고 있어 교통량 데이터와 같은 자료에 적용하기에는 한계가 있다. 이러한 한계점을 극복하고 보완하기 위해 ARIMA 모형에 자기상관 모형인 SAR(Seasonal Auto Regressive)과 계절 이동평균 모형인 SMA(Seasonal Moving Average)가 결합된 분석 기법인 SARIMA 모형을 적용하였다. 분석결과 최적 파라미터 조합인 SARIMA(4,1,3)(4,0,3) 12 모형을 활용한 교통량 예측 결과 평균 85% 정도의 우수한 성능을 보였다. 본 연구를 통해서 교통량 데이터의 결측 발생 시 교통량 보정 및 예측의 정확도를 높일 수 있으며, 교통량 데이터 외에도 계절성에 영향을 받는 시계열 데이터에 적용이 가능하다.
본 연구에서는 소음에 대한 이론적 연구와 도로교통소음에 관하여 살펴보았다. 그리고 국내의 도로소음예측모델을 다른 선진국의 모델과 비교 분석하여 예측인자의 적용현황 및 적용상의 문제점을 도출하였다. 일반식 정립을 위한 사례연구에서는 국립환경연구원에서 제안한 식에 적용한 예측치와 실측치를 비교하여 국내의 도로교통소음 예측모델의 개선점을 살펴보았다. 또한 소음에 대한 통행량과 속도의 관계를 고찰해보기 위해서, 이 식에서 주요 요인으로 사용한 통행량과 속도의 두 요인 중에서 무엇이 더 큰 영향을 가지는지를 회귀분석을 통하여 속도가 통행량보다 더 밀접한 관계가 있음을 알 수 있었다. 따라서 도로소음을 줄이기 위해서는 차량의 통행량의 고려도 중요하지만 차량의 속도 규제가 더욱 중요하다고 볼 수 있다. 지구보정치 도출을 위한 사례연구에서는 도로교통소음이 단지내에 공간적으로 미치는 영향을 분석하고자 하였다. 세 아파트 단지의 도로교통소음을 측정하여 비교 분석함으로써 도로교통소음은 단지내에 평면적 입체적으로 영향을 미치고 있음을 확인하였다. 즉, 소음원에서 거리가 멀어질수록 소음의 크기가 적어지고, 높은 위치로 올라갈수록 소음의 크기는 증가하다가 어느 정도 높이 이상에서는 다시 소음의 크기는 줄어들고, 소음의 방향에 장애물이 있을 경우 소음의 영향이 줄어들었다. 따라서 단지내에 소음이 미치는 영향을 이러한 점들을 고려하여 공간적으로 파악한 단지 설계를 해야 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.