• Title/Summary/Keyword: Traffic Congestion Control

Search Result 390, Processing Time 0.021 seconds

A Study on the Minimum Safety Distance between Navigation Vessels based on Vessel Operator's Safety Consciousness (선박운항자 안전 의식에 기초한 선박통항 최소 이격거리에 관한 연구)

  • Park, Young-Soo;Jeong, Jae-Yong;Kim, Jong-Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.401-406
    • /
    • 2010
  • Vessel Operator has been navigating with subjective sate distance in accordance with night & daytime, fore & aft, port & stbd abeam and visibility situation. This sate distances may different depending on inside & outside harbor limit, current, wind and visibility situation. By now, the concept of proper sate distance between navigating vessels has been adopted in Korea, using the early 1980's foreign data. And the safe distance is being used with the same value without any consideration of inside & outside harbor and the kind of vessel. So it is necessary to evaluate or search proper distance concept based on different sate consciousness of Korean manners. This paper aims to develop the basic model for marine traffic evaluation and the new model of marine traffic congestion. Also this paper proposes the basic control guideline of vessel traffic service center. The result of this study showed that minimum sate distance should be 4.4L forward, 3.1L aft and 26L abeam in case of good visibility in daytime, considering various parameters such as visibility, day and night. Some differences Here found between the existing minimum sate distance and the new minimum sate distance derived from the result of this study.

PGA: An Efficient Adaptive Traffic Signal Timing Optimization Scheme Using Actor-Critic Reinforcement Learning Algorithm

  • Shen, Si;Shen, Guojiang;Shen, Yang;Liu, Duanyang;Yang, Xi;Kong, Xiangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4268-4289
    • /
    • 2020
  • Advanced traffic signal timing method plays very important role in reducing road congestion and air pollution. Reinforcement learning is considered as superior approach to build traffic light timing scheme by many recent studies. It fulfills real adaptive control by the means of taking real-time traffic information as state, and adjusting traffic light scheme as action. However, existing works behave inefficient in complex intersections and they are lack of feasibility because most of them adopt traffic light scheme whose phase sequence is flexible. To address these issues, a novel adaptive traffic signal timing scheme is proposed. It's based on actor-critic reinforcement learning algorithm, and advanced techniques proximal policy optimization and generalized advantage estimation are integrated. In particular, a new kind of reward function and a simplified form of state representation are carefully defined, and they facilitate to improve the learning efficiency and reduce the computational complexity, respectively. Meanwhile, a fixed phase sequence signal scheme is derived, and constraint on the variations of successive phase durations is introduced, which enhances its feasibility and robustness in field applications. The proposed scheme is verified through field-data-based experiments in both medium and high traffic density scenarios. Simulation results exhibit remarkable improvement in traffic performance as well as the learning efficiency comparing with the existing reinforcement learning-based methods such as 3DQN and DDQN.

A Data Caching Management Scheme for NDN (데이터 이름 기반 네트워킹의 데이터 캐싱 관리 기법)

  • Kim, DaeYoub
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.291-299
    • /
    • 2016
  • To enhance network efficiency, named-data networking (NDN) implements data caching functionality on intermediate network nodes, and then the nodes directly respond to request messages for cached data. Through the processing of request messages in intermediate node, NDN can efficiently reduce the amount of network traffic, also solve network congestion problems near data sources. Also, NDN provides a data authenticate mechanism so as to prevent various Internet accidents caused from the absence of an authentication mechanism. Hence, through applying NDN to various smart IT convergence services, it is expected to efficiently control the explosive growth of network traffic as well as to provide more secure services. Basically, it is important factors of NDN which data is cached and where nodes caching data is located in a network topology. This paper first analyzes previous works caching content based on the popularity of the content. Then ii investigates the hitting rate of caches in each node of a network topology, and then propose an improved caching scheme based on the result of the analyzation. Finally, it evaluates the performance of the proposal.

Predictive Traffic Control Scheme of ABR Service (ABR 서비스를 위한 예측 트래픽 제어모델)

  • 오창윤;임동주;배상현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.307-312
    • /
    • 2000
  • Asynchronous transfer mode(ATM) is flexible to support the various multimedia communication services such as data, voice, and image by applying asynchronous time-sharing and statistical multiplexing techniques to the existing data communication. ATM service is categorized to CBR, VBR, UBR, and ABR according to characteristics of the traffic and a required service qualities. Among them, ABR service guarantees a minimal bandwidth and can transmit cells at a maximum transmission rate within the available bandwidth. To minimize the cell losses in transmission and switching, a feedback information in ATM network is used to control the traffic. In this paper, predictive control algorithms are proposed for the feedback information. When the feedback information takes a long propagation delay to the backward nodes, ATM switch can experience a congestion situation from the queue length increases, and a high queue length fluctuations in time. The control algorithms proposed in this paper provides predictive control model using slop changes of the queue length function and previous data of the queue lengths. Simulation shows the effectiveness result of the proposed control algorithms.

  • PDF

A Modified Random Early Detection Algorithm: Fuzzy Logic Based Approach

  • Yaghmaee Mohammad Hossein
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.337-352
    • /
    • 2005
  • In this paper, a fuzzy logic implementation of the random early detection (RED) mechanism [1] is presented. The main objective of the proposed fuzzy controller is to reduce the loss probability of the RED mechanism without any change in channel utilization. Based on previous studies, it is clear that the performance of RED algorithm is extremely related to the traffic load as well as to its parameters setting. Using fuzzy logic capabilities, we try to dynamically tune the loss probability of the RED gateway. To achieve this goal, a two-input-single-output fuzzy controller is used. To achieve a low packet loss probability, the proposed fuzzy controller is responsible to control the $max_{p}$ parameter of the RED gateway. The inputs of the proposed fuzzy controller are 1) the difference between average queue size and a target point, and 2) the difference between the estimated value of incoming data rate and the target link capacity. To evaluate the performance of the proposed fuzzy mechanism, several trials with file transfer protocol (FTP) and burst traffic were performed. In this study, the ns-2 simulator [2] has been used to generate the experimental data. All simulation results indicate that the proposed fuzzy mechanism out performs remarkably both the traditional RED and Adaptive RED (ARED) mechanisms [3]-[5].

Analysis of a Queueing Model with Combined Control of Arrival and Token Rates (패킷 도착률과 토큰 생성률의 통합 관리를 적용한 대기모형의 분석)

  • Choi, Doo-Il;Kim, Tae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.895-900
    • /
    • 2010
  • As the diverse telecommunication services have been developed, network designers need to prevent congestion which may be caused by properties of timecorrelation and burstiness, and unpredictable statistical fluctuation of traffic streams. This paper considers the leaky bucket scheme with combined control of arrival and token rates, in which the arrival rate and the token generation interval are controlled according to the queue length. By using the embedded Markov chain and the supplementary variable methods, we obtain the queue length distribution as well as the loss probability and the mean waiting time.

A Computer Simulator to Assess the Operational Scenarios for the Personal Rapid Transit Systems

  • Lee, Jun-Ho;Lee, Jae-Ho;Kim, Yong-Kyu
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.117-121
    • /
    • 2008
  • The personal rapid transit (PRT) system is a small scale transportation system that employs a novel concept to solve the traffic congestion problem in the city area. The PRT system is a driverless on-demand system that a passenger calls a vehicle rather than waits for the vehicle. Therefore, one of the most important issues in the PRT system is how to control the vehicle with the satisfaction of the basic concept of the PRT system. In this paper a computer simulator is introduced to evaluate the vehicle. operational control algorithm of the PRT system. The. computer simulator has the commercial embedded processor boards that operate in the real time operating system and pre-designed vehicle control algorithm is coded into the processor boards. The experimental results present the effectiveness of the proposed evaluation apparatus.

  • PDF

A New Routing Protocol in Wireless Ad-hoc Networks with Multiple Radios and Channels

  • Ko, Sung-Won;Cho, Jeong-Hwan;Hong, Kwon-Eui
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.7
    • /
    • pp.26-40
    • /
    • 2010
  • We propose a new routing protocol, MCQosR, that is based on bandwidth estimation, admission control, and a routing metric, MCCR - suitable for wireless ad-hoc networks with multiple radios and channels. To use the full capacity of a wireless link, we assume a node with multiple radios for full duplex operation, and a radio using multiple channels to exclude route-intra interference. This makes it possible to use the capacity of a wireless link. Then, to provide bandwidth and delay guarantee, we have a radio with a fixed channel for layer-3 data reception at each node, used to estimate the available bandwidth and expected delay of a wireless link. Based on the estimate of available bandwidth and delay, we apply the call admission control to a new call requiring bandwidth and delay guarantee. New calls with traffic that will overflow link or network capacity are rejected so the accepted calls can use the required bandwidth and delay. Finally, we propose a routing metric, MCCR, which considers the channel contentions and collisions of a wireless link operating in CSMA/CA. MCCR is useful for finding a route with less traffic and distributing traffic over the network to prevent network congestion as much as possible. The simulation of the MCQosR protocol and the MCCR metric shows traffic is distributed and guaranteed service is provided for accepted calls.

A study on the Throughput Guarantee with TCP Traffic Control (전송률 보장을 위한 TCP 트래픽 제어에 관한 연구)

  • Lee, Myun-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.303-308
    • /
    • 2016
  • Recently, as the rapid development of network technology and the increase of services required high bandwidth such as multimedia service, the network traffic dramatically increases. This massive increase of network traffic causes some problems such as the degradation of QoS and the lack of network resources and, to solve these problems, various research to guarantee QoS have been performing. Currently, The most representative method to guarantee the QoS is the DiffServ(: Differentiated Service). The DiffServ defines the AF(: Assured Forwarding) PHB(: Per Hop Behavior) and statistically ensures the throughput over the certain level of data rate. However, the TCP congestion control method that make up the majority of the Internet traffic is not fundamentally suitable to the DiffServ that guarantees the throughput without managing the individual flow. Therefore, in this paper, we present this mismatch through the simulation as an example and propose the solution by controlling the TCP of the terminal in the network. The proposed scheme utilizes the information of the reception window size included in the ACK frame and does not require any modification of the TCP algorithms currently in use.

Study on the Ways to Improve Deep Underground Road Facilities and Operation Based on the Cases of Longitudinal Tunnel (장대터널의 사례에 기반한 대심도 지하도로 교통시설 및 운영 개선방안)

  • Choi, Jong Chul;Lim, Joon Beom;Hong, Ji yeon;Lee, Sung Yeol
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.122-131
    • /
    • 2015
  • Recently, starting with the deep underground road construction plan in Seobu Expressway, Korea, there area many studies on deep underground roads to be newly built. However, there is an extreme lack of safety standards, which does not consider traffic conditions and road driving characteristics. Therefore, this study reviewed safety elements to reflect in the deep underground road planning by analyzing driving stability of longitudinal tunnels with road environments, which resemble deep underground roads. For comprehensive analysis, the characteristics and causes of the accidents that have occurred in seven longitudinal tunnels with a length of 2km or over in Gangwon area, were collected. Specifically, geometric structures and facilities of each tunnel were investigated. Also, the present state of facility installation and the changes in driving speed of vehicles passing through each tunnel were observed to analyze the causes for the traffic accidents in each tunnel and accident reduction alternatives. It was revealed that the most frequent accidents in the tunnels resulted from the changes of traffic flow due to the abrupt speed reduction of forward vehicles, or the failure in speed control of following vehicles during the traffic congestion situation. Moreover, installing facilities such as plane and longitudinal curves, median strips and marginal strips seem to induce consistent driving speed. These results mean that for accident prevention, speed management must be preceded and there is a need to develop and introduce safety facilities actively to control the driving flow of forward and following vehicles.