• Title/Summary/Keyword: Traffic Congestion Control

Search Result 390, Processing Time 0.025 seconds

Estimation and Prediction-Based Connection Admission Control in Broadband Satellite Systems

  • Jang, Yeong-Min
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.40-50
    • /
    • 2000
  • We apply a "sliding-window" Maximum Likelihood(ML) estimator to estimate traffic parameters On-Off source and develop a method for estimating stochastic predicted individual cell arrival rates. Based on these results, we propose a simple Connection Admission Control(CAC)scheme for delay sensitive services in broadband onboard packet switching satellite systems. The algorithms are motivated by the limited onboard satellite buffer, the large propagation delay, and low computational capabilities inherent in satellite communication systems. We develop an algorithm using the predicted individual cell loss ratio instead of using steady state cell loss ratios. We demonstrate the CAC benefits of this approach over using steady state cell loss ratios as well as predicted total cell loss ratios. We also derive the predictive saturation probability and the predictive cell loss ratio and use them to control the total number of connections. Predictive congestion control mechanisms allow a satellite network to operate in the optimum region of low delay and high throughput. This is different from the traditional reactive congestion control mechanism that allows the network to recover from the congested state. Numerical and simulation results obtained suggest that the proposed predictive scheme is a promising approach for real time CAC.

  • PDF

A Study on Cooperative Traffic Signal Control at multi-intersection (다중 교차로에서 협력적 교통신호제어에 대한 연구)

  • Kim, Dae Ho;Jeong, Ok Ran
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1381-1386
    • /
    • 2019
  • As traffic congestion in cities becomes more serious, intelligent traffic control is actively being researched. Reinforcement learning is the most actively used algorithm for traffic signal control, and recently Deep reinforcement learning has attracted attention of researchers. Extended versions of deep reinforcement learning have been emerged as deep reinforcement learning algorithm showed high performance in various fields. However, most of the existing traffic signal control were studied in a single intersection environment, and there is a limitation that the method at a single intersection does not consider the traffic conditions of the entire city. In this paper, we propose a cooperative traffic control at multi-intersection environment. The traffic signal control algorithm is based on a combination of extended versions of deep reinforcement learning and we considers traffic conditions of adjacent intersections. In the experiment, we compare the proposed algorithm with the existing deep reinforcement learning algorithm, and further demonstrate the high performance of our model with and without cooperative method.

Study on the Operational Effect of Real-time Traffic Signal Control Using the Data from Smart Instersections (스마트교차로 데이터를 활용한 실시간 교통신호제어 운영 효과 분석)

  • Sangwook Lee;Bobae Jeon;Seok Jin Oh;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.48-62
    • /
    • 2023
  • Recently, smart intersections have been installed in many intelligent transportation system projects, but few cases use them for traffic signal operations besides traffic volume collection and statistical analysis. In order to respond to chronic traffic congestion, it is necessary to implement efficient signal operations using data collected from smart intersections. Therefore, this study establishes a procedure for operating a real-time traffic signal control algorithm using smart intersection data for efficient traffic signal operations and improving the existing algorithm. Effect analysis confirmed that intersection delays are reduced and the section speed improves when the offset is adjusted.

A study on traffic signal control at signalized intersections in VANETs (VANETs 환경에서 단일 교차로의 교통신호 제어방법에 관한 연구)

  • Chang, Hyeong-Jun;Park, Gwi-Tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.108-117
    • /
    • 2011
  • Seoul metropolitan government has been operating traffic signal control system with the name of COSMOS since 2001. COSMOS uses the degrees of saturation and congestion which are calculated by installing loop detectors. At present, inductive loop detector is generally used for detecting vehicles but it is inconvenient and costly for maintenance since it is buried on the road. In addition, the estimated queue length might be influenced in case of error occurred in measuring speed, because it only uses the speed of vehicles passing by the detector. A traffic signal control algorithm which enables smooth traffic flow at intersection is proposed. The proposed algorithm assigns vehicles to the group of each lane and calculates traffic volume and congestion degree using traffic information of each group using VANETs(Vehicular Ad-hoc Networks) inter-vehicle communication. It does not demand additional devices installation such as cameras, sensors or image processing units. In this paper, the algorithm we suggest is verified for AJWT(Average Junction Waiting Time) and TQL(Total Queue Length) under single intersection model based on GLD(Green Light District) Simulator. And the result is better than Random control method and Best first control method. In case real-time control method with VANETs is generalized, this research that suggests the technology of traffic control in signalized intersections using wireless communication will be highly useful.

A Protocol for Reliable Data Transfer and Congestion Control in Wireless Sensor Networks (무선 센서 네트워크에서 신뢰성 있는 데이터 전송과 혼잡 제어를 위한 프로토콜)

  • Kim, Hyun-Tae;Joo, Young-Hoon;Ra, In-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.230-234
    • /
    • 2007
  • Generally, huge amounts of data traffic are generated by using broadcasting method to deliver sensing data to a sink node reliably so that it makes a severe network saturation problem resulting in unreliable data transfer. In order to handle this problem, a new congestion control protocol is required for supporting reliable data transfer, minimal use of energy and network resources at the same time in wireless sensor networks. In this paper, it proposes a Protocol to guarantee both a reliable transfer in data accuracy and minimum consumption of energy waste by using Hop-by-Hop sequence number and DSbACK(Delayed and Selective ACK Buffer Condition) scheme. In addition, it proves that reliability and energy efficiency are enhanced by the proposed method with the simulation results performed on TinyOS platform which is a component based built-in OS announced by UC Berkely with the performance comparison of other existing methods.

Loss-RTT based Differentiated Rate Adaptation Algorithm (Loss-RTT 기반 차등 전송률 조절 알고리즘에 관한 연구)

  • 김지언;정재일
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.17-20
    • /
    • 2000
  • TCP is ill-suited to real-time multimedia applications. Its bursty transmission, and abrupt and frequent wide rate fluctuations cause high delay jitters and sudden quality degradation of multimedia applications. Deploying non congestion controlled traffic results in extreme unfairness towards competing TCP traffic. Therefore, they need to be enhanced with congestion control schemes that not only am at reducing loss ratios and improve bandwidth utilization but also are fair towards competing TCP connections. This paper proposes a differentiated rate adaptation algorithm based on loss and round trip time. Rate in a sender quickly responds to loss ratio and holds steady state. Additionally, this algorithm reduces loss ratio by loss prediction in a receiver.

  • PDF

Analysis of switching mechanism for ABR traffic services in ATM networks (ATM망에서 ABR 트래픽 서비스를 위한 스위칭 메카니즘 분석)

  • 박준식;김노환
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.4
    • /
    • pp.140-147
    • /
    • 1999
  • ABR uses the extra network resource more efficiently which uses not the guaranteed service in ATM and supports the best effort which the characteristics of application is bursty and maximum transfer rate is high. Switches for using ABR flow control differentiate EFCI switches (which supply only the congestion state information) from ER switches (which supply fair rate to source). This paper analyses the switches operation technique for efficiently managing ABR traffic in case which the network mixes EFCI switches and ER switches in ATM.

  • PDF

Resilient Reduced-State Resource Reservation

  • Csaszar Andras;Takacs Attila;Szabo Robert;Henk Tamas
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.509-524
    • /
    • 2005
  • Due to the strict requirements of emerging applications, per-flow admission control is gaining increasing importance. One way to implement per-flow admission control is using an on­path resource reservation protocol, where the admission decision is made hop-by-hop after a new flow request arrives at the network boundary. The next-steps in signaling (NSIS) working group of the Internet engineering task force (IETF) is standardising such an on-path signaling protocol. One of the reservation methods considered by NSIS is reduced-state mode, which, suiting the differentiated service (DiffServ) concept, only allows per-class states in interior nodes of a domain. Although there are clear benefits of not dealing with per-flow states in interior nodes-like scalability and low complexity-, without per-flow states the handling of re-routed flows, e.g., after a failure, is a demanding and highly non-trivial task. To be applied in carrier-grade networks, the protocol needs to be resilient in this situation. In this article, we will explain the consequences of a route failover to resource reservation protocols: Severe congestion and incorrect admission decisions due to outdated reservation states. We will set requirements that handling solutions need to fulfill, and we propose extensions to reduced-state protocols accordingly. We show with a set of simulated scenarios that with the given solutions reduced-state protocols can handle re-routed flows practically as fast and robust as stateful protocols.

A Fair Multicast Congestion Control Mechanism based on the Designated Server (지정된 서버를 이용한 공정한 멀티캐스트 혼잡제어 메커니즘)

  • Oh, Jae-Hwan;Kum, Jung-Hyun;Chung, Kwang-Sue;Kim, Hwa-Sung
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.233-241
    • /
    • 2002
  • In this paper, we proposed a new mechanism that solves the fairness problem between unicast traffic using the TCP and multicast traffic using the UDP, and satisfies the requirement of various receivers fairly in the Internet. The proposed mechanism decentralizes the load of blanket transmission rate control from sender to designated server, and uses the method that talc designated server intercepts the sender's data and controls the transmission rate suitable for it's local network. Therefore, the proposed mechanism not only provides multicast service by accurate estimation of the network status of each receiver, but also realizes both the inter-session fairness and the intra-session fairness problem.

Delay Control using Fast TCP Prototype in Internet Communication (인터넷 통신에서 고속 TCP 프로토타입을 이용한 지연 제어)

  • 나하선;김광준;나상동
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1194-1201
    • /
    • 2003
  • Measurements of network traffic have shown that self-similarity is a ubiquitous phenomenon spanning across diverse network environments. We have advance the framework of multiple time scale congestion control and show its effectiveness at enhancing performance for fast TCP prototype control. In this paper, we extend the fast TCP prototype control framework to window-based congestion control, in particular, TCP. This is performed by interfacing TCP with a large time scale control module which adjusts the aggressiveness of bandwidth consumption behavior exhibited by TCP as a function of "large time scale" network state. i.e., conformation that exceeds the horizon of the feedback loop as determined by RTT. Performance evaluation of fast TCP prototype is facilitated by a simulation bench-mark environment which is based on physical modeling of self-similar traffic. We explicate out methodology for discerning and evaluating the impact of changes in transport protocols in the protocol stack under self-similar traffic conditions. We discuss issues arising in comparative performance evaluation under heavy-tailed workload. workload.