• Title/Summary/Keyword: Traditional Machine Learning

Search Result 322, Processing Time 0.021 seconds

Trends in image processing techniques applied to corrosion detection and analysis (부식 검출과 분석에 적용한 영상 처리 기술 동향)

  • Beomsoo Kim;Jaesung Kwon;Jeonghyeon Yang
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.353-370
    • /
    • 2023
  • Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely applied to corrosion identification and analysis. In this work, we briefly introduces traditional image processing techniques and machine learning algorithms applied to detect or analyze corrosion in various fields. Recently, machine learning, especially CNN-based algorithms, have been widely applied to corrosion detection. Additionally, research on applying machine learning to region segmentation is very actively underway. The corrosion is reddish and brown in color and has a very irregular shape, so a combination of techniques that consider color and texture, various mathematical techniques, and machine learning algorithms are used to detect and analyze corrosion. We present examples of the application of traditional image processing techniques and machine learning to corrosion detection and analysis.

A Strategy for Constructing the Thesaurus of Traditional East Asian Medicine (TEAM) Terms With Machine Learning (기계 학습을 이용한 한의학 용어 유의어 사전 구축 방안)

  • Oh, Junho
    • Journal of Korean Medical classics
    • /
    • v.35 no.1
    • /
    • pp.93-102
    • /
    • 2022
  • Objectives : We propose a method for constructing a thesaurus of Traditional East Asian Medicine terminology using machine learning. Methods : We presented a method of combining the 'Automatic Step' which uses machine learning and the 'Manual Step' which is the operator's review process. By applying this method to the sample data, we constructed a simple thesaurus and examined the results. Results : Out of the 17,874 sample data, a thesaurus was constructed targeting 749 terminologies. 200 candidate groups were derived in the automatic step, from which 79 synonym groups were derived in the manual step. Conclusions : The proposed method in this study will likely save resources required in constructing a thesaurus.

Option pricing and profitability: A comprehensive examination of machine learning, Black-Scholes, and Monte Carlo method

  • Sojin Kim;Jimin Kim;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.5
    • /
    • pp.585-599
    • /
    • 2024
  • Options pricing remains a critical aspect of finance, dominated by traditional models such as Black-Scholes and binomial tree. However, as market dynamics become more complex, numerical methods such as Monte Carlo simulation are accommodating uncertainty and offering promising alternatives. In this paper, we examine how effective different options pricing methods, from traditional models to machine learning algorithms, are at predicting KOSPI200 option prices and maximizing investment returns. Using a dataset of 2023, we compare the performance of models over different time frames and highlight the strengths and limitations of each model. In particular, we find that machine learning models are not as good at predicting prices as traditional models but are adept at identifying undervalued options and producing significant returns. Our findings challenge existing assumptions about the relationship between forecast accuracy and investment profitability and highlight the potential of advanced methods in exploring dynamic financial environments.

Comparison of Scala and R for Machine Learning in Spark (스파크에서 스칼라와 R을 이용한 머신러닝의 비교)

  • Woo-Seok Ryu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.85-90
    • /
    • 2023
  • Data analysis methodology in the healthcare field is shifting from traditional statistics-oriented research methods to predictive research using machine learning. In this study, we survey various machine learning tools, and compare several programming models, which utilize R and Spark, for applying R, a statistical tool widely used in the health care field, to machine learning. In addition, we compare the performance of linear regression model using scala, which is the basic languages of Spark and R. As a result of the experiment, the learning execution time when using SparkR increased by 10 to 20% compared to Scala. Considering the presented performance degradation, SparkR's distributed processing was confirmed as useful in R as the traditional statistical analysis tool that could be used as it is.

A Strategy for Disassembling the Traditional East Asian Medicine Herbal Formulas With Machine Learning (기계 학습을 이용한 한의학 처방 분석 방안)

  • Oh Junho
    • Journal of Korean Medical classics
    • /
    • v.36 no.2
    • /
    • pp.23-34
    • /
    • 2023
  • Objectives : We propose a method to disassemble Traditional East Asian Medicine herbal formulas using machine learning. Methods : After creating a model using Byte Pair Encoding(BPE) and G-Score, the model was trained with training data. Afterwards, the learned model was applied to the test data, of which the results were compared with expert opinion. Results : The results acquired through the model were not significantly different from those of modern expert opinions. However, there were cases where the meaning was partially unclear, while there were cases where new knowledge could be obtained through the disassembling process. Conclusions : It is expected that disassembling herbal formulas through the proposed method in this study will help save resources required to understand complex ones.

Realtime Analysis of Sasang Constitution Types from Facial Features Using Computer Vision and Machine Learning

  • Abdullah;Shah Mahsoom Ali;Hee-Cheol Kim
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.3
    • /
    • pp.256-266
    • /
    • 2024
  • Sasang constitutional medicine (SCM) is one of the best traditional therapeutic approaches used in Korea. SCM prioritizes personalized treatment that considers the unique constitution of an individual and encompasses their physical characteristics, personality traits, and susceptibility to specific diseases. Facial features are essential for diagnosing Sasang constitutional types (SCTs). This study aimed to develop a real-time artificial intelligence-based model for diagnosing SCTs using facial images, building an SCTs prediction model based on a machine learning method. Facial features from all images were extracted to develop this model using feature engineering and machine learning techniques. The fusion of these features was used to train the AI model. We used four machine learning algorithms, namely, random forest (RF), multilayer perceptron (MLP), gradient boosting machine (GBM), and extreme gradient boosting (XGB), to investigate SCTs. The GBM outperformed all the other models. The highest accuracy achieved in the experiment was 81%, indicating the robustness of the proposed model and suitability for real-time applications.

Underwater Acoustic Research Trends with Machine Learning: General Background

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.147-154
    • /
    • 2020
  • Underwater acoustics that is the study of the phenomenon of underwater wave propagation and its interaction with boundaries, has mainly been applied to the fields of underwater communication, target detection, marine resources, marine environment, and underwater sound sources. Based on the scientific and engineering understanding of acoustic signals/data, recent studies combining traditional and data-driven machine learning methods have shown continuous progress. Machine learning, represented by deep learning, has shown unprecedented success in a variety of fields, owing to big data, graphical processor unit computing, and advances in algorithms. Although machine learning has not yet been implemented in every single field of underwater acoustics, it will be used more actively in the future in line with the ongoing development and overwhelming achievements of this method. To understand the research trends of machine learning applications in underwater acoustics, the general theoretical background of several related machine learning techniques is introduced in this paper.

Predicting the maximum lateral load of reinforced concrete columns with traditional machine learning, deep learning, and structural analysis software

  • Pelin Canbay;Sila Avgin;Mehmet M. Kose
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.285-299
    • /
    • 2024
  • Recently, many engineering computations have realized their digital transformation to Machine Learning (ML)-based systems. Predicting the behavior of a structure, which is mainly computed with structural analysis software, is an essential step before construction for efficient structural analysis. Especially in the seismic-based design procedure of the structures, predicting the lateral load capacity of reinforced concrete (RC) columns is a vital factor. In this study, a novel ML-based model is proposed to predict the maximum lateral load capacity of RC columns under varying axial loads or cyclic loadings. The proposed model is generated with a Deep Neural Network (DNN) and compared with traditional ML techniques as well as a popular commercial structural analysis software. In the design and test phases of the proposed model, 319 columns with rectangular and square cross-sections are incorporated. In this study, 33 parameters are used to predict the maximum lateral load capacity of each RC column. While some traditional ML techniques perform better prediction than the compared commercial software, the proposed DNN model provides the best prediction results within the analysis. The experimental results reveal the fact that the performance of the proposed DNN model can definitely be used for other engineering purposes as well.

Enhancement of Text Classification Method (텍스트 분류 기법의 발전)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.155-156
    • /
    • 2019
  • Traditional machine learning based emotion analysis methods such as Classification and Regression Tree (CART), Support Vector Machine (SVM), and k-nearest neighbor classification (kNN) are less accurate. In this paper, we propose an improved kNN classification method. Improved methods and data normalization achieve the goal of improving accuracy. Then, three classification algorithms and an improved algorithm were compared based on experimental data.

  • PDF

Research on Financial Distress Prediction Model of Chinese Cultural Industry Enterprises Based on Machine Learning and Traditional Statistical (전통적인 통계와 기계학습 기반 중국 문화산업 기업의 재무적 곤경 예측모형 연구)

  • Yuan, Tao;Wang, Kun;Luan, Xi;Bae, Ki-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.545-558
    • /
    • 2022
  • The purpose of this study is to explore a prediction model for accurately predicting Financial Difficulties of Chinese Cultural Industry Enterprises through Traditional Statistics and Machine Learning. To construct the prediction model, the data of 128 listed Cultural Industry Enterprises in China are used. On the basis of data groups composed of 25 explanatory variables, prediction models using Traditional Statistical such as Discriminant Analysis and logistic as well as Machine Learning such as SVM, Decision Tree and Random Forest were constructed, and Python software was used to evaluate the performance of each model. The results show that the Random Forest model has the best prediction performance, with an accuracy of 95%. The SVM model was followed with 93% accuracy. The Decision Tree model was followed with 92% accuracy.The Discriminant Analysis model was followed with 89% accuracy. The model with the lowest prediction effect was the Logistic model with an accuracy of 88%. This shows that Machine Learning model can achieve better prediction effect than Traditional Statistical model when predicting financial distress of Chinese cultural industry enterprises.