• Title/Summary/Keyword: Trade-off in compositions-properties-process

Search Result 3, Processing Time 0.022 seconds

Crystallization Kinetics by Thermal Analysis (DTA) on Starting Glass Compositions for PDP(Plasma Display Panel) Rib (열분석에 의한 PDP 격벽용 출발유리조성의 결정화 특성 연구)

  • Jeon, Young-Wook;Cha, Jae-Min;Kim, Dae-Whan;Lee, Byung-Chul;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.721-727
    • /
    • 2002
  • In order to overcome trade-off among compositions, process and properties of the glasses with high PbO-base composition for PDP Rib, we studied glass crystallization and crystallization kinetics by Differential Thermal Analysis(DTA). Glass powder was obtained through melting/cooling/grinding, with 3 wt%TiO2 addition for the crystal nucleation and growth in $62PbO-19B_2O_3-10SiO_2-9(Al_2O_3-K_2O-BaO-ZnO)$(in wt%) composition glass. This powder was heat-treated for 1 to 10 h at $445^{\circ}C$ for nucleation. DTA measurements were performed to obtain the crystallization peak with $5∼25^{\circ}C/min$ heating rates. DTA crystallization peak temperature increased with increasing the heating rate and decreased with increasing the heating time. Because the Avrami parameter (n) was approximately 1, the surface crystallization occurred. The maximum nucleation time was 2 h.

3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys (금속 3D 프린팅 적층 제조 공정 기반 Al-Si-Cu-Mg 합금 조합 실험)

  • Song, Yongwook;Kim, Jungjoon;Park, Suwon;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.233-239
    • /
    • 2022
  • Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.

Combinatorial Experiment for Al-6061 and Al-12Si alloy Based on Directed Energy Deposition (DED) Process (3차원 적층 제조 공정(DED) 기반 Al-6061+Al-12Si 합금 조합 실험)

  • Seoyeon Jeon;Suwon Park;Yongwook Song;Jiwon Park;Hyunyoung Park;Boram Lee;Hyunjoo Choi
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.463-469
    • /
    • 2023
  • Aluminum alloys, known for their high strength-to-weight ratios and impressive electrical and thermal conductivities, are extensively used in numerous engineering sectors, such as aerospace, automotive, and construction. Recently, significant efforts have been made to develop novel aluminum alloys specifically tailored for additive manufacturing. These new alloys aim to provide an optimal balance between mechanical properties and thermal/electrical conductivities. In this study, nine combinatorial samples with various alloy compositions were fabricated using direct energy deposition (DED) additive manufacturing by adjusting the feeding speeds of Al6061 alloy and Al-12Si alloy powders. The effects of the alloying elements on the microstructure, electrical conductivity, and hardness were investigated. Generally, as the Si and Cu contents decreased, electrical conductivity increased and hardness decreased, exhibiting trade-off characteristics. However, electrical conductivity and hardness showed an optimal combination when the Si content was adjusted to below 4.5 wt%, which can sufficiently suppress the grain boundary segregation of the α-Si precipitates, and the Cu content was controlled to induce the formation of Al2Cu precipitates.