DOI QR코드

DOI QR Code

Combinatorial Experiment for Al-6061 and Al-12Si alloy Based on Directed Energy Deposition (DED) Process

3차원 적층 제조 공정(DED) 기반 Al-6061+Al-12Si 합금 조합 실험

  • Seoyeon Jeon (School of Materials Science and Engineering, Kookmin University) ;
  • Suwon Park (School of Materials Science and Engineering, Kookmin University) ;
  • Yongwook Song (School of Materials Science and Engineering, Kookmin University) ;
  • Jiwon Park (School of Materials Science and Engineering, Kookmin University) ;
  • Hyunyoung Park (School of Materials Science and Engineering, Kookmin University) ;
  • Boram Lee (School of Materials Science and Engineering, Kookmin University) ;
  • Hyunjoo Choi (School of Materials Science and Engineering, Kookmin University)
  • 전서연 (국민대학교 신소재공학부) ;
  • 박수원 (국민대학교 신소재공학부) ;
  • 송용욱 (국민대학교 신소재공학부) ;
  • 박지원 (국민대학교 신소재공학부) ;
  • 박현영 (국민대학교 신소재공학부) ;
  • 이보람 (국민대학교 신소재공학부) ;
  • 최현주 (국민대학교 신소재공학부)
  • Received : 2023.11.30
  • Accepted : 2023.12.18
  • Published : 2023.12.28

Abstract

Aluminum alloys, known for their high strength-to-weight ratios and impressive electrical and thermal conductivities, are extensively used in numerous engineering sectors, such as aerospace, automotive, and construction. Recently, significant efforts have been made to develop novel aluminum alloys specifically tailored for additive manufacturing. These new alloys aim to provide an optimal balance between mechanical properties and thermal/electrical conductivities. In this study, nine combinatorial samples with various alloy compositions were fabricated using direct energy deposition (DED) additive manufacturing by adjusting the feeding speeds of Al6061 alloy and Al-12Si alloy powders. The effects of the alloying elements on the microstructure, electrical conductivity, and hardness were investigated. Generally, as the Si and Cu contents decreased, electrical conductivity increased and hardness decreased, exhibiting trade-off characteristics. However, electrical conductivity and hardness showed an optimal combination when the Si content was adjusted to below 4.5 wt%, which can sufficiently suppress the grain boundary segregation of the α-Si precipitates, and the Cu content was controlled to induce the formation of Al2Cu precipitates.

Keywords

Acknowledgement

이 성과는 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A5A1030054).

References

  1. B. Stojanovic, М. Bukvic and I. Epler: Appl. Eng. Lett., 3 (2018) 52. 
  2. R. A. Michi, A. Plotkowski, A. Shyam, R. R. Dehoff and S. S. Babu: Int. Mater. Rev., 67 (2022) 298. 
  3. S. Z. Han, E. A. Choi, S. H. Lim, S. Kim and J. Lee: Prog. Mater. Sci., 117 (2021) 100720. 
  4. J. M. Sanchez, I. Vicario, J. Albizuri, T. Guraya and E. M. Acuna: Sci. Rep., 9 (2019). 
  5. F. M. Dambietz, T. S. Hartwich, J. S. Correa, P. Hoffmann and D. Krause: Lasers in Manufacturing Conference 2021, (2021) 1. 
  6. S. Park, Y. Song, J. Yeo, S. Han and H. Choi: J. Powder Mater., 30 (2023) 255. 
  7. D. Eisenbarth, P. Stoll, C. Klahn, T. B. Heinis, M. Meboldt and K. Wegener: Addit. Manuf., 35 (2020) 101298. 
  8. D. G. Ahn: Int. J. Precis. Eng. Manuf. Green Technol., 8 (2021) 703. 
  9. A. D. Iams, M. Z. Gao, A. Shetty and T. A. Palmer: Powder Technol., 396 (2022) 316. 
  10. M. Liu, A. Kumar, S. Bukkapatnam and M. Kuttolamadom: Procedia Manuf., 53 (2021) 507. 
  11. P. A. Hooper: Addit. Manuf., 22 (2018) 548. 
  12. H. Zhao and T. Debroy: Metall. Mater. Trans. B, 32B (2001) 163. 
  13. H. Shen, J. Yan and X. Niu: Materials, 13 (2020) 4157. 
  14. D. K. Koli, G. Agnihotri and R. Purohit: Procedia Mater. Sci., 6 (2014) 567. 
  15. H. Ye, X. Cui, X. Li, H. Cui, B. Zhang, H. Li, Y. Pan, R. Feng, Y. Wu and X. Liu: J. Alloys Compd., 885 (2021) 161117. 
  16. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer and T. Someya: Nature, 499 (2013) 458.