• Title/Summary/Keyword: Trade Big Data

Search Result 94, Processing Time 0.031 seconds

A Study on Public Policy through Semantic Network Analysis of Public Data related News in Korea (국내 공공데이터 관련 뉴스 의미망 분석을 통한 공공정책 연구)

  • Moon, HyeJung;Lee, Kyungseo
    • Journal of Broadcast Engineering
    • /
    • v.23 no.4
    • /
    • pp.536-548
    • /
    • 2018
  • Public data has been transformed from provider-oriented information disclosure to a form of personalized information sharing centered on individual citizens since government 3.0. As a result, the government is implementing policies and projects to maximize the value of public data and increase reuse. This study analyzes the issues related to public data in the news and seeks the status of government agencies and government projects by issue. We conducted semantic analysis on domestic online news and public agency bidding information including public data and conducted the work of linking major key words derived with social and economic values inherent in public data. As a result, major issues related to public data were divided into broader access to public data, growth of new technology, cooperation and conflict among stakeholders, and utilization of the private sector, which were closely related to transparency, efficiency, participation, and innovation mechanisms. Also major agencies of four issues include the Ministry of Strategy and Finance and Seoul, Ministry of Culture, Sports and Tourism and Gyeonggi-do, Ministry of Trade, Industry and Energy and Incheon, and Ministry of Land, Infrastructure and Transport and Gyeongsangbuk-do. Most of the issues are being led by the government.

The Prediction of Export Credit Guarantee Accident using Machine Learning (기계학습을 이용한 수출신용보증 사고예측)

  • Cho, Jaeyoung;Joo, Jihwan;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.83-102
    • /
    • 2021
  • The government recently announced various policies for developing big-data and artificial intelligence fields to provide a great opportunity to the public with respect to disclosure of high-quality data within public institutions. KSURE(Korea Trade Insurance Corporation) is a major public institution for financial policy in Korea, and thus the company is strongly committed to backing export companies with various systems. Nevertheless, there are still fewer cases of realized business model based on big-data analyses. In this situation, this paper aims to develop a new business model which can be applied to an ex-ante prediction for the likelihood of the insurance accident of credit guarantee. We utilize internal data from KSURE which supports export companies in Korea and apply machine learning models. Then, we conduct performance comparison among the predictive models including Logistic Regression, Random Forest, XGBoost, LightGBM, and DNN(Deep Neural Network). For decades, many researchers have tried to find better models which can help to predict bankruptcy since the ex-ante prediction is crucial for corporate managers, investors, creditors, and other stakeholders. The development of the prediction for financial distress or bankruptcy was originated from Smith(1930), Fitzpatrick(1932), or Merwin(1942). One of the most famous models is the Altman's Z-score model(Altman, 1968) which was based on the multiple discriminant analysis. This model is widely used in both research and practice by this time. The author suggests the score model that utilizes five key financial ratios to predict the probability of bankruptcy in the next two years. Ohlson(1980) introduces logit model to complement some limitations of previous models. Furthermore, Elmer and Borowski(1988) develop and examine a rule-based, automated system which conducts the financial analysis of savings and loans. Since the 1980s, researchers in Korea have started to examine analyses on the prediction of financial distress or bankruptcy. Kim(1987) analyzes financial ratios and develops the prediction model. Also, Han et al.(1995, 1996, 1997, 2003, 2005, 2006) construct the prediction model using various techniques including artificial neural network. Yang(1996) introduces multiple discriminant analysis and logit model. Besides, Kim and Kim(2001) utilize artificial neural network techniques for ex-ante prediction of insolvent enterprises. After that, many scholars have been trying to predict financial distress or bankruptcy more precisely based on diverse models such as Random Forest or SVM. One major distinction of our research from the previous research is that we focus on examining the predicted probability of default for each sample case, not only on investigating the classification accuracy of each model for the entire sample. Most predictive models in this paper show that the level of the accuracy of classification is about 70% based on the entire sample. To be specific, LightGBM model shows the highest accuracy of 71.1% and Logit model indicates the lowest accuracy of 69%. However, we confirm that there are open to multiple interpretations. In the context of the business, we have to put more emphasis on efforts to minimize type 2 error which causes more harmful operating losses for the guaranty company. Thus, we also compare the classification accuracy by splitting predicted probability of the default into ten equal intervals. When we examine the classification accuracy for each interval, Logit model has the highest accuracy of 100% for 0~10% of the predicted probability of the default, however, Logit model has a relatively lower accuracy of 61.5% for 90~100% of the predicted probability of the default. On the other hand, Random Forest, XGBoost, LightGBM, and DNN indicate more desirable results since they indicate a higher level of accuracy for both 0~10% and 90~100% of the predicted probability of the default but have a lower level of accuracy around 50% of the predicted probability of the default. When it comes to the distribution of samples for each predicted probability of the default, both LightGBM and XGBoost models have a relatively large number of samples for both 0~10% and 90~100% of the predicted probability of the default. Although Random Forest model has an advantage with regard to the perspective of classification accuracy with small number of cases, LightGBM or XGBoost could become a more desirable model since they classify large number of cases into the two extreme intervals of the predicted probability of the default, even allowing for their relatively low classification accuracy. Considering the importance of type 2 error and total prediction accuracy, XGBoost and DNN show superior performance. Next, Random Forest and LightGBM show good results, but logistic regression shows the worst performance. However, each predictive model has a comparative advantage in terms of various evaluation standards. For instance, Random Forest model shows almost 100% accuracy for samples which are expected to have a high level of the probability of default. Collectively, we can construct more comprehensive ensemble models which contain multiple classification machine learning models and conduct majority voting for maximizing its overall performance.

Smart Store in Smart City: The Development of Smart Trade Area Analysis System Based on Consumer Sentiments (Smart Store in Smart City: 소비자 감성기반 상권분석 시스템 개발)

  • Yoo, In-Jin;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.25-52
    • /
    • 2018
  • This study performs social network analysis based on consumer sentiment related to a location in Seoul using data reflecting consumers' web search activities and emotional evaluations associated with commerce. The study focuses on large commercial districts in Seoul. In addition, to consider their various aspects, social network indexes were combined with the trading area's public data to verify factors affecting the area's sales. According to R square's change, We can see that the model has a little high R square value even though it includes only the district's public data represented by static data. However, the present study confirmed that the R square of the model combined with the network index derived from the social network analysis was even improved much more. A regression analysis of the trading area's public data showed that the five factors of 'number of market district,' 'residential area per person,' 'satisfaction of residential environment,' 'rate of change of trade,' and 'survival rate over 3 years' among twenty two variables. The study confirmed a significant influence on the sales of the trading area. According to the results, 'residential area per person' has the highest standardized beta value. Therefore, 'residential area per person' has the strongest influence on commercial sales. In addition, 'residential area per person,' 'number of market district,' and 'survival rate over 3 years' were found to have positive effects on the sales of all trading area. Thus, as the number of market districts in the trading area increases, residential area per person increases, and as the survival rate over 3 years of each store in the trading area increases, sales increase. On the other hand, 'satisfaction of residential environment' and 'rate of change of trade' were found to have a negative effect on sales. In the case of 'satisfaction of residential environment,' sales increase when the satisfaction level is low. Therefore, as consumer dissatisfaction with the residential environment increases, sales increase. The 'rate of change of trade' shows that sales increase with the decreasing acceleration of transaction frequency. According to the social network analysis, of the 25 regional trading areas in Seoul, Yangcheon-gu has the highest degree of connection. In other words, it has common sentiments with many other trading areas. On the other hand, Nowon-gu and Jungrang-gu have the lowest degree of connection. In other words, they have relatively distinct sentiments from other trading areas. The social network indexes used in the combination model are 'density of ego network,' 'degree centrality,' 'closeness centrality,' 'betweenness centrality,' and 'eigenvector centrality.' The combined model analysis confirmed that the degree centrality and eigenvector centrality of the social network index have a significant influence on sales and the highest influence in the model. 'Degree centrality' has a negative effect on the sales of the districts. This implies that sales decrease when holding various sentiments of other trading area, which conflicts with general social myths. However, this result can be interpreted to mean that if a trading area has low 'degree centrality,' it delivers unique and special sentiments to consumers. The findings of this study can also be interpreted to mean that sales can be increased if the trading area increases consumer recognition by forming a unique sentiment and city atmosphere that distinguish it from other trading areas. On the other hand, 'eigenvector centrality' has the greatest effect on sales in the combined model. In addition, the results confirmed a positive effect on sales. This finding shows that sales increase when a trading area is connected to others with stronger centrality than when it has common sentiments with others. This study can be used as an empirical basis for establishing and implementing a city and trading area strategy plan considering consumers' desired sentiments. In addition, we expect to provide entrepreneurs and potential entrepreneurs entering the trading area with sentiments possessed by those in the trading area and directions into the trading area considering the district-sentiment structure.

Analysis of trade newspapers related to dental hygienists as healthcare professionals using language analysis technique: using R program (언어분석기법을 활용한 치과위생사의 의료인화 관련 신문기사 분석: R 프로그램 이용)

  • Kim, Song-Yi;Yoon, Ga-Rim;Kang, Dong-Hyun;Kim, Su-Jin;Lee, Si-Eun;Jang, Soo-Bin;Hong, Seong-Min;Hwang, Ji-Hoon;Kim, Nam-Hee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.17 no.5
    • /
    • pp.921-930
    • /
    • 2017
  • Objectives: The purposes of this study were to analyze the trade newspapers related to 'recognition of the dental hygienist as the healthcare professional' using R program and to identify opinions of groups concerned with dental hygienists. Methods: This study was designed with contents analysis and cross-sectional. The subjects of the study were the articles for the last three years in medical and dental newspapers about the recognition of the dental hygienist as the healthcare professional. The collected articles were categorized and classified for each group's opinions about the issue. The key words were extracted according to the priorities of the opinions of agreement and disagreement. They were visualized after frequency analysis using R, a big data analysis program. Results: A total of 237 newspaper articles were extracted among 270 ones containing opinions. 245 were positive opinions and 25 were negatives. The main key words of the agreement were 'Amendment of Medical Law', 'Medical Practice', and 'Legal Guarantee of the Practice'. Advocates addressed that the issues should be resolved with the amendment of the law, as dental hygienists are not guaranteed to work based on the current law although they are actually doing the medical practices. Main key words of disagreement were 'Legal Guarantee of the Practice', 'Revision of Medical Technician Law', and 'Review of Job Type'. They described that the problem can be resolved by revising medical technicians act, and it needs to consider as job types of all healthcare professional. Conclusions: In the group who showed the positive opinions, it is possible to utilize measures such as promoting the cooperation of dental hygienists and developing public consensus through publicity.

Bitcoin(Gold)'s Hedge·Safe-Haven·Equity·Taxation (비트코인(금)의 헷지·안전처·공평성·세제 소고)

  • Hwang, Y.
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.13-32
    • /
    • 2018
  • Btcoin has made a big progress through anonymity, decentralized authority, sharing economy, multi-ledger book-keeping, block-technology and the convenient financial vehicle. Bitcoin has the characteristics of mining and supply by decentralized suppliers, limited supply quantity and the partial money-like function as well as gold. The paper studies the hedge and safe-haven of Bitcoin and gold on daily frequency data over the period of July 20, 2010-Dec. 27, 2017 employing Asymmetric Vector GARCH. It finds that gold has the hedge and safe-haven against inflation and capital markets while Bitcoin has the weak hedge and the weak safe-haven. It shows insignificant effects of inflations of US and Korea on the volatilities of Bitcoin and gold. It also suggests the necessity of clearing of vagueness behind the anonymity for fair and transparent trade through the law application in the absence or fault in law (Lucken im Recht). following the spirit of the living constitution (lebendige gutes Recht oder Vorschrift). The relevant institutions are hoped to be given some of obligations such as registration, minimum required capital. report, disclosure, explanation, compliance and governance with autonomous corresponding rights. The study also suggests the reestablishment of the relevant financial law and taxation law. The hedge would not be successfully accomplished without the vigilant cautions of investors.

Research on Stock price prediction system based on BLSTM (BLSTM을 이용한 주가 예측 시스템 연구)

  • Hong, Sunghyuck
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.19-24
    • /
    • 2020
  • Artificial intelligence technology, which is the core of the 4th industrial revolution, is making intelligent judgments through deep learning techniques and machine learning that it is impossible to predict if it is applied to stock prediction beyond human capabilities. In US fund management companies, artificial intelligence is replacing the role of stock market analyst, and research in this field is actively underway. In this study, we use BLSTM to reduce errors that occur in unidirectional prediction of the existing LSTM method, reduce errors in predictions by predicting in both directions, and macroscopic indicators that affect stock prices, namely, economic growth rate, economic indicators, interest rate, analyze the trade balance, exchange rate, and volume of currency. To help stock investment by accurately predicting the target price of stocks by analyzing the PBR, BPS, and ROE of individual stocks after analyzing macro-indicators, and by analyzing the purchase and sale quantities of foreigners, institutions, pension funds, etc., which have the most influence on stock prices.

A Posterior Preference Articulation Method to Dual-Response Surface Optimization: Selection of the Most Preferred Solution Using TOPSIS (쌍대반응표면최적화를 위한 사후선호도반영법: TOPSIS를 활용한 최고선호해 선택)

  • Jeong, In-Jun
    • Knowledge Management Research
    • /
    • v.19 no.2
    • /
    • pp.151-162
    • /
    • 2018
  • Response surface methodology (RSM) is one of popular tools to support a systematic improvement of quality of design in the product and process development stages. It consists of statistical modeling and optimization tools. RSM can be viewed as a knowledge management tool in that it systemizes knowledge about a manufacturing process through a big data analysis on products and processes. The conventional RSM aims to optimize the mean of a response, whereas dual-response surface optimization (DRSO), a special case of RSM, considers not only the mean of a response but also its variability or standard deviation for optimization. Recently, a posterior preference articulation approach receives attention in the DRSO literature. The posterior approach first seeks all (or most) of the nondominated solutions with no articulation of a decision maker (DM)'s preference. The DM then selects the best one from the set of nondominated solutions a posteriori. This method has a strength that the DM can understand the trade-off between the mean and standard deviation well by looking around the nondominated solutions. A posterior method has been proposed for DRSO. It employs an interval selection strategy for the selection step. This strategy has a limitation increasing inefficiency and complexity due to too many iterations when handling a great number (e.g., thousands ~ tens of thousands) of nondominated solutions. In this paper, a TOPSIS-based method is proposed to support a simple and efficient selection of the most preferred solution. The proposed method is illustrated through a typical DRSO problem and compared with the existing posterior method.

The Determinants of Price Differential between Common and Preferred Stock (보통주와 우선주간의 가격괴리율 결정요인에 관한 실증분석)

  • Nam, Gi-Seok;Im, Chae-Chang
    • Management & Information Systems Review
    • /
    • v.28 no.3
    • /
    • pp.25-44
    • /
    • 2009
  • The purpose of this paper is to examine the determinants which cause a price differential between common and preferred stock. Prior studies have shown that variables like liquidity, size, the number of outstanding shares issued can explain the price differential between common and preferred stock price. Based on year 2006 through year 2008 data, we analyzed the determinants using regression model. Dummy variables representing large/small company and KSE/KOSDAQ respectively are added and analyzed as independent variables. The firm size, trade volume turnover, and the number of preferred shares to total outstanding shares were proved to make influence on the price differential under the 5% significance level. Especially, we have found the number of preferred shares to total outstanding shares provide the most strong relationship with the price differential. This means that a high ratio of preferred stock to total outstanding shares leads to relatively high value of common stock and causes a big price differential.

  • PDF

A Study on Construction of Domain Ontology in Third-party Logistics (제3자 물류 환경에서 도메인 온톨로지 구축)

  • Gao, Li;Koh, Jin-Gwang;Bae, Si-Yeong;Lee, Hyun-Chang;Choi, Hyun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.235-241
    • /
    • 2011
  • A large number of industry and trade circulation enterprises integrate logistics resource. They give links of product transport to some professional logistics enterprises in order to reduce costs. We call these professional logistics enterprises as the Third-party Logistics. As the development of the computer and internet, the suppliers, buyers and the Third-party Enterprises connect each other with internet. And different company use different management software, so heterogeneous data become a big problem of the information system for Third-party Enterprises. We built the logistics ontology with prot$\'{e}$g$\'{e}$, and translate it in OWL. We also built the rules for Logistics Ontology to improve the limitations of the OWL. Then we design the intelligent system for 3PL Enterprises Distribution Center based on Logistics Ontology and Logistics Rules. At final, we give an example to show the workflow visually.

Are Business Cycles in the Fashion Industry Affected by the News? -An ARIMAX Time Series Correlation Analysis between the KOSPI Index for Textile & Wearing Apparel and Media Agendas- (패션산업의 경기변동은 뉴스의 영향을 받는가? -섬유의복 KOSPI와 미디어 의제의 ARIMAX 시계열 상관관계 분석-)

  • Hyojung Kim;Minjung Park
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.5
    • /
    • pp.779-803
    • /
    • 2023
  • The growth of digital news media and the stock price index has resulted in economic fluctuations in the fashion industry. This study examines the impact of fashion industry news and macroeconomic changes on the Textile & Wearing Apparel KOSPI over the past five years. An auto-regressive integrated moving average exogenous time series model was conducted using the fashion industry stock market index, the news topic index, and macro-economic indicators. The results indicated the topics of "Cosmetic business expansion" and "Digital innovation" impacted the Textile & Wearing Apparel KOSPI after one week, and the topics of "Pop-up store," "Entry into the Chinese fashion market," and "Fashion week and trade show" affected it after two weeks. Moreover, the topics of "Cosmetic business expansion" and "Entry into the Chinese fashion market" were statistically significant in the macroeconomic environment. Regarding the effect relation of Textile & Wearing Apparel KOSPI, "Cosmetic business expansion," "Entry into the Chinese fashion market," and consumer price fluctuation showed negative effects, while the private consumption change rate, producer price fluctuation, and unemployment change rate had positive effects. This study analyzes the impact of media framing on fashion industry business cycles and provides practical insights into managing stock market risk for fashion companies.