• Title/Summary/Keyword: Tractor simulation model

Search Result 63, Processing Time 0.021 seconds

Development of a Toroidal CVT Controller for Agricultural Tractor (II) - PID controller - (트랙터용 토로이달 무단변속기 제어시스템 개발(II) - PID 콘트롤러 개발 -)

  • Kim H. J.;Ryu K. H.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.407-418
    • /
    • 2004
  • There are several different types of continuously variable transmission(CVT) such as toroidal drive, belt drive, hydrostatic drive, hydro-mechanical drive. The toroidal CVT is an alternative to the manual transmission, HST, power-shift gear trans-missions or other CVTs. The driver of the CVT tractor doesn't have to operate a shia lever since the CVT controller automatically controls the speed of tractor. Thus, it is much easier to operate the CVT tractor. The fuel efficiency of CVT tractor can be increased since the controller responds quickly to the change in external load on the wheel during field operation. This study was conducted to develop the hardwares and softwares for the toroidal CVT controller which control the variator and the range clutches. The hardware consisted of a measurement system, hydraulic system and computer. And the PID controller was developed using the simulation model of the CVT control system. Through the simulation, the control coefficients for the PID controller were selected. Finally, the performance of the CVT control system was evaluated by step response test and torque response test. The settling time of the CVT control system appeared to be fast enough for field operations.

Modeling and Simulation for a Tractor Equipped with Hydro-Mechanical Transmission

  • Choi, Seok Hwan;Kim, Hyoung Jin;Ahn, Sung Hyun;Hong, Sung Hwa;Chai, Min Jae;Kwon, Oh Eun;Kim, Soo Chul;Kim, Yong Joo;Choi, Chang Hyun;Kim, Hyun Soo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • Purpose: A simulator for the design and performance evaluation of a tractor with a hydro-mechanical transmission (HMT) was developed. Methods: The HMT consists of a hydro-static unit (HSU), a swash plate control system, and a planetary gear. It was modeled considering the input/output relationship of the torque and speed, and efficiency of HSU. Furthermore, a dynamic model of a tractor was developed considering the traction force, running resistance, and PTO (power take off) output power, and a tractor performance simulator was developed in the co-simulation environment of AMESim and MATLAB/Simulink. Results: The behaviors of the design parameters of the HMT tractor in the working and driving modes were investigated as follows; For the stepwise change of the drawbar load in the working mode, the tractor and engine speeds were maintained at the desired values by the engine torque and HSU stroke control. In the driving mode, the tractor followed the desired speed through the control of the engine torque and HSU stroke. In this case, the engine operated near the OOL (optimal operating line) for the minimum fuel consumption within the shift range of HMT. Conclusions: A simulator for the HMT tractor was developed. The simulations were conducted under two operation conditions. It was found that the tractor speed and the engine speed are maintained at the desired values through the control of the engine torque and the HSU stroke.

Characteristics of Power Efficiency of Tractor Driveline (트랙터 전동라인의 전동효율 특성 분석)

  • 류일훈;김대철;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2002
  • According to the field test, the transient power transmission efficiency of a tractor driveline fluctuated in a range of 56 to 86% and the mean value was about 72.5%. Therefore, the constant efficiency model commonly used for a simulation of power performance was not proper far predicting such a variable of efficiency. In order to predict power efficiency more accurately, new concepts of the maximum efficiency and drag torque were introduced and a new model based on the these concepts was proposed. The difference between measured and model-predicted efficiencies was about 1.5% in average with a standard deviation of 1.1%. The new power efficiency model was expected to enhance the accuracy of predicting power transmission efficiencies of tractor drivelines.

Behavior and Durability Analysis of Tractor applying a hybrid power system (하이브리드 동력시스템을 적용한 트랙터의 동적 거동 및 내구해석)

  • Kim, Byeong Sam;Lim, Gwang Gue
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.61-66
    • /
    • 2014
  • This paper described on the motion of hybrid tractor trajectory for powertrain system. The dynamics behavior used to the tractor according to the characteristics of the road surface using $Daful^@$ analysis. The tractor industry is facing to a big problem about rising gas price and exhaust gas environment. Because it was possible overcoming the past drawback, hybrid vehicle had been decided as the best technical way since it has started operating the internal combustion engine with the electric power as the motive power. The vehicle structures have designed the model of a major power transmission factor. The simulation realized in this paper that motion of tractor being turned by torque and force of each joints. Driving characteristics, especially in recent years, IVHS (Intelligent Vehicle Tractor / System) technology, while receiving a lot of attention because of the tractor and the need to pursue high function is emerging as a more and more.

COMPUTER SIMULATION OF TRACTOR PERFORMANCE WITH REGARD TO ENERGY SAVING AND POLLUTION REDUCING

  • Zou, Cheng;Sakai, Jun;Nagata, Masateru
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1110-1116
    • /
    • 1993
  • A study on optimum operation performances of power efficiency, economy and exhaust emissions for a tractor was conducted. A mathematical model of multiple degree polynomial equation was applied to established the function of solid multiple parameter curves for specific fuel consumption (ge), cabon monoxide (CO) ,hydrcarbons (HC) and cabonaceous smoke (Rb). The optimum operation theorems for economy operation indicated by ge and for exhaust emissions described by Co , HC and Rb were obtained from analytical method and performance test data. The optimum operation theorems could exhibit optimum operation working points, curves, and regions. The optimum matching relations of engine speed and transmission parameters were analyzed by using computer simulation methods in accordance with the tractor specifications , actual farm working conditions in a typical drawbar pull work such as plowing , the optimum operation objective function, the ideal transmission ratio, practical gear shif ing positions and practical travel speed of the tractor TN55 medel. The results of the anlayzes indicated clearly that the optimum power efficient operation, energy saving and pollution reducing would be realized if the tractor would be operated according to theoptimum operation methods.

  • PDF

Delayed Operation Characteristics of Power Shuttle According to Hydraulic Oil Temperature in the Hydraulic Circuit of Agricultural Tractor

  • Park, Yoon-Na;Kim, Dae-Cheol;Park, Seung-Je
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: During the start-up period, the response time of a hydraulic system increases in the winter because of the increased oil viscosity caused by the cold weather. The problems of delayed tractor starting and excessive wear of the clutch disk occur for these reasons. Therefore, this study develops an analysis model using the commercial hydraulic analysis program AMESim to examine the characteristics of delays in power shuttle starting at different oil temperatures. Methods: In the experiment, a tractor was stationary on a flat surface with the engine running at a constant speed of 1,080 rpm. The forward lever was then pressed to activate the power shuttle at three different oil temperatures, and the pressure changes were measured. The pressure on the forward clutch control valve was measured by a pressure gauge installed on the hydraulic line supplied to the transmission from the main valve. An analysis model was also developed and verified with actual tests. Results: The trend of the simulated pressures of the power shuttle is similar to that of the measured pressures, and a constant modulation period was observed in both the simulation and test results. However, the difference found between the simulation and test results was the initial pressure required to overcome the initial force of the clutch spring. Conclusions: This study also examines the characteristics of the delayed startup of the power shuttle at different oil temperatures through simulations.

Development and performance evaluation of lateral control simulation-based multi-body dynamics model for autonomous agricultural tractor

  • Mo A Son;Hyeon Ho Jeon;Seung Yun Baek;Seung Min Baek;Wan Soo Kim;Yeon Soo Kim;Dae Yun Shin;Ryu Gap Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.773-784
    • /
    • 2023
  • In this study, we developed a dynamic model and steering controller model for an autonomous tractor and evaluated their performance. The traction force was measured using a 6-component load cell, and the rotational speed of the wheels was monitored using proximity sensors installed on the axles. Torque sensors were employed to measure the axle torque. The PI (proportional integral) controller's coefficients were determined using the trial-error method. The coefficient of the P varied in the range of 0.1 - 0.5 and the I coefficient was determined in 3 increments of 0.01, 0.05, and 0.1. To validate the simulation model, we conducted RMS (root mean square) comparisons between the measured data of axle torque and the simulation results. The performance of the steering controller model was evaluated by analyzing the damping ratio calculated with the first and second overshoots. The average front and rear axle torque ranged from 3.29 - 3.44 and 6.98 - 7.41 kNm, respectively. The average rotational speed of the wheel ranged from 29.21 - 30.55 rpm at the front, and from 21.46 - 21.63 rpm at the rear. The steering controller model exhibited the most stable control performance when the coefficients of P and I were set at 0.5 and 0.01, respectively. The RMS analysis of the axle torque results indicated that the left and right wheel errors were approximately 1.52% and 2.61% (at front) and 7.45% and 7.28% (at rear), respectively.

Modeling Sideways Overturning of Agricultural Tractors

  • Kim, K.U.;Park, H.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.379-392
    • /
    • 1996
  • A mathematic model was developed for the simulation of sideways overturning of agricultural tractors on slopes. The overturning motion was described as a combination of the rotational motions with respect to the first and second tipping axes using the principle of conservation of angular mementum. A stability criterion was also established in terms of angular acceleration of tractor about the second tipping axis. Verification of the proposed model was provided by comparing the stability boundaries predicted by computer simulation with those observed experimentally for an equivalent 1/6 scaled mode tractor. A good agreement was shown between the simulation and experimental results.

  • PDF

Characteristic Analysis of Planetary Gear Set of Hydromechanical Transmission System of Agricultural Tractors

  • Park, Young-Jun;Kim, Jeong-Gil;Lee, Geun-Ho
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.145-152
    • /
    • 2016
  • Purpose: This study aims to establish the effect of pinhole position errors in the planet carrier of a planetary gear set (PGS) on load sharing among the planet gears in the hydromechanical transmission (HMT) system of an agricultural tractor. Methods: A simulation model of a PGS with five planet gears was developed to analyze load sharing among the planet gears. The simulation model was verified by comparing i ts r esults w ith those of a model developed in a previous s tudy. The verified simulation model was used to analyze the load-sharing characteristics of the planet gears with respect to the pinhole position error and the input torque to the PGS. Results: Both simulation models had identical load magnitude sequences for the five planet gears. However, the load magnitudes on the corresponding planet gears differed between the models because of the different stiffnesses of the PGS components and the input torques to the PGS. The verified simulation model demonstrated that the evenness of load sharing among the planet gears increases with decreasing pinhole position error and increasing input torque. Conclusions: The geometrical tolerance of the pinhole position should be properly considered during the design of the planet carrier to improve the service life of the PGS and load sharing among the planet gears.

Analysis of the Lateral Motion of a Tractor-Trailer Combination (II) Operator/Vehicle System with Time Delay for Backward Maneuver

  • Mugucia, S.W.;Torisu, R.;Takeda, J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1147-1156
    • /
    • 1993
  • In order to analyze lateral control in the backward maneuver of a tractor -trailer combination , a kinematic vehicle model and a human operator model with time delay were utilized for the operator/vehicle system. The analysis was carried out using the frequency domain approach. The open-loop stability of the vehicle motion was analyzed through the transfer functions. The sensitivity of the stability of the vehicle motion. to a change in the steering angle, was also analyzed. A mathematical model of the closed -loop operator/vehicle system was then formulated. The closed -loop stability of the operator /vehicle system was then analyzed. The effect of the delay time on the system was also analyzed through computer simulation.

  • PDF