• Title/Summary/Keyword: Tractor attached

Search Result 67, Processing Time 0.023 seconds

Mechanical harvest efficiency to rhizomes of Rehmannia glutinosa Libosch. (지황의 기계수확 효율비교)

  • 남상영;김인재;김민자;이철희;김태수
    • Korean Journal of Plant Resources
    • /
    • v.15 no.1
    • /
    • pp.72-76
    • /
    • 2002
  • This study was carried out to determine an effective mechanical harvester for rhizomes of Rehmannia glutinosa Libosch. Labor-saving efficiency showed 69∼76% by using tillage operations with power tiller, digger attached to power tiller, and digger attached to tractor compared with manual harvest. Loss percentage of rhizomes by mechanical harvesters was 3.1∼ 9.3% higher, and fresh rhizome yield was 2∼6% lower than that by manual harvest, respectively. Although it showed higher loss percentage of rhizomes and lower fresh rhizome yield compared with manual harvest, mechanical harvest using digger attached to power tiller or digger attached to tractor was effective in labor-saving for rhizomes of Rehmannia glutinosa Libosch.

Electro-hydraulic Characteristic Analysis of Arm-type Implement for Three-point Hitch (3점 히치 장착형 암식 작업기의 전자유압특성 분석)

  • Lee, Sang-Sik;Park, Won-Yeop
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.314-318
    • /
    • 2011
  • Arm-type implements of tractor are mainly utilized for the slope land operation. The proposed hydraulic system was implemented to arm-type implements of tractor. An experiment was conducted to evaluate response characteristics of the designed arm-type implement control system attached by three-point hitch of tractor at various conditions, such as engine speed, pumping rate and cylinder input flow. Effects of the valve response time didn't affect engine speed. The flow rate of pump and cylinder changed to the pressure loss. Also, the pressure loss was within 2 MPa and the response characteristic was sufficient enough to use as the arm-type implement system.

LOAD CHARACTERISTICS OF ROTARY OPERATION BY TRACTOR IN WET PADDY FIELDS

  • Y. G. Wu;Kim, K. U.;Y. K. Jung
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.101-108
    • /
    • 2000
  • The torque loads were measured at the input shaft of the transmission and driving shaft of the tractor having a cage wheel attached to the driving tires as a traction aid during. a rotavating operation in wet paddy fields with deep hardpan. Their load spectra were also calculated. Effects of design parameters of the cage wheel on the load characteristics were analyzed. The torque load exerted on the input shaft decreased as diameter of the cage wheel increased and increased as the rotating speed of the rotavator increased. The torque load exerted on the driving shaft increased as the working speed of the tractor increased and decreased as the PTO speed increased. Both the torque loads with the cage wheel were greater than those without the cage wheel. The cage wheel was developed for this study.

  • PDF

Development of the 80-kW Test Tractor for Load Measurement of Agricultural Operations (농작업 부하 계측을 위한 80kW급 계측 트랙터 개발 및 검증)

  • Cho, Seung-Je;Kim, Jeong-Gil;Park, Jin-Sun;Kim, Yeon-Soo;Lee, Dongkeun
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.46-53
    • /
    • 2022
  • RIn this study, a test tractor that could measure various types of agricultural operational loads was developed, and its performance was verified. This tractor could be used to measure the load generated during agricultural work and convert the related data into a database. A test tractor was developed using an 80-kW-rated load tractor, and it could measure various types of field test data, such as engine torque and rpm, wheel torque, PTO(power take-off) torque, hexometer, IMU/INS sensor, steering angle sensor, hydraulic pressure, and flow sensor data. To verify the developed test tractor, a verification test using an agriculture rotavator was performed. The test conditions were L1, L2, and L3 based on the tractor's main and sub-transmission stages, and stages 1 and 2 were selected as the PTO. In a comparison of the analyzed test data, similar tendencies in the test results of this research and other research (Kim's research) were seen. Through this, the developed test tractor was verified. In the future, we plan to conduct research on the tractor developed in this study using various attached working machines.

Design of a Tractor mountable Bevameter (트랙터 부착용(附着用) 토양심하(土壤沈下) 및 전단(剪斷) 시험기(試驗器)의 설계(設計))

  • Ryu, K.H.;Kim, K.U.;Sohn, S.S.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.1-8
    • /
    • 1987
  • New design of a bevameter was attempted to that it can be not only attached to and powered by the tractor hydraulic control system, but is equipped with a data acquisition system using a microcomputer. Results of field tests of the new design showed that it has a good performance and practical applicability to the measurements of pressure-sinkage and shear stress-displacement relations from which toil parameters of the Bekker theory can be evaluated.

  • PDF

Study on Attitude Control System of Rotary Implement Attached on Agricultural Tractor (트랙터 로타리 작업기용 자세 제어 시스템에 관한 연구)

  • Lee, J.Y.;Go, W.;Shim, J.S.;Shin, H.C.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.427-438
    • /
    • 1998
  • In Korea, rotary implements are mainly utilized in the tillage operation. The attitude control system for rolling phenominon of tractors, which in caused due to uneven ground surfaces and sinkage of tractor wheels, is one of the most important control systems in agricultural tractors. The attitude control system of a rotary implement, attached on tractors, was designed and fabricated in this study. The control system was largely composed of four main units; a setting unit, a detection unit, a controller and a hydraulic unit. The implement was controlled by control signals from a computer proportional to controlled errors, on/off action of two directional solenoide valve and lift cylinder on the right lift rod. Response characteristic experiments for the control system fabricated in this study were carried out indoors and outdoors. The results of experiments showed the response characteristics sufficient to use as the attitude control system of rotary implements for agricultural tractors.

  • PDF

Load Characteristics of Rotary Operation Using a Cage Wheel in Wet Paddy Fields (케이지 휠을 이용한 습답 로터리 작업의 부하 특성)

  • 오영근;김경욱;박금숙
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.229-236
    • /
    • 2001
  • The torque loads acting on the input shaft of the transmission and final driving shaft of the tractor having a cage wheel attached to the driving tries as a traction aid were measured during the rotavating operations in a poorly drained paddy field. Using the measured load data load spectra were constructed. Effects of the design parameters of the cage wheel on the load characteristics were also analyzed. The torque load exerted on the input shaft decreased as the diameter of the cage wheel increased and increased as the rotavator speed increased. The torque load exerted on the final driving shaft increased as the working speed of the tractor increased and decreased as the rotavator speed increased. The torque load on the final driving shaft with the cage wheel were greater than those without the cage wheel.

  • PDF

Effects of Configurational Parameters on the Dynamic Characteristics of a Cabin (캐빈 동특성에 대한 형상변수의 기여도 해석)

  • Ahn, Tae Kil;Ahn, Se Hwan;Park, Min Su;So, Byeong Eob;Kim, Joong Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.18-22
    • /
    • 2014
  • A new concept tractor is developed, which can conduct multi-functional complex tasks such as excavating and working with attached various equipments. A cabin of the agricultural tractor is designed to protect the driver from vibration transmitted due to the irregular ground and overturning of the tractor. In this paper, the dynamic characteristic of the cabin is identified through finite element analysis and effects of configurational parameters are investigated to insure the dynamic stiffness of the cabin.

Prediction of Power Consumed By Forward and Reverse Rotation Rotavator using Field Load Analysis (필드 부하 분석을 이용한 정/역회전 로타베이터의 소요 동력 예측)

  • Kim, Jeong-Gil;Park, Jin-Sun;Cho, Seung-Je;Lee, Dong-Keun;Park, Young-Jun;Moon, Sang-Gon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.67-73
    • /
    • 2021
  • In this study, we installed forward and reverse rotation rotavators on a tractor to measure the load in the field and analyze the power consumed. The rotavator is attached to the rear of the tractor and transmits the power applied from the power take off (PTO) of the tractor to the rotating shaft of the rotavator, and it plows or reverses the soil according to the rotational direction of the rotating shaft. Depending on the rotational direction of the rotavator, the power consumed in the tractor engine and the power transmitted to the tractor axle and rotavator also vary, thus, research of load and power is an essential factor in designing the system. As a field test results, 84.1-93.5% power was consumed by the forward rotation rotavator, and 37.8-57.5% power was consumed by the reverse rotation rotavator. In addition, depending on the rotation direction of the rotavator, the power consumed by the tractor was in the order of PTO and axle. Based on the research results, development of reliable rotavator systems would be possible in the future research.