• Title/Summary/Keyword: Tractor Implement

Search Result 40, Processing Time 0.022 seconds

Computer Aided-Optimum Design of Tractor-Rotary Power Driveline (II) - Optimum Design - (컴퓨터를 이용한 트랙터 -로터리 전동 라인의 최적 설계 (II) -최적 설계 -)

  • 류일훈;김경욱;김대철
    • Journal of Biosystems Engineering
    • /
    • v.22 no.2
    • /
    • pp.105-116
    • /
    • 1997
  • Using the design variables and conditions reported in the rut part of this paper, an analysis and optimum design of the tractor-rotary power driveline were carried out. The optimum design method involved 1 variable, 2 variable and multiple variable analysis performed as requested in the design process. In order to evaluate the effects of the design variables on the power transmission performance a sensitivity analysis were also conducted. the results indicated that the length and link point of the upper link, the upper hitch point of the implement master and the location of the implement input connection affect most significantly the driveline performance. The optimum design improved the performance of an exampled tractor-rotary driveline by 93% in terms of cosine ratio.

  • PDF

Development of Steering Control System based on CAN for Autonomous Tractor System (자율 주행 트랙터 시스템의 성능 향상을 위한 CAN 기반의 조향제어시스템 개발)

  • Seo, Dong-Hyun;Seo, Il-Hwan;Chung, Sun-Ok;Kim, Ki-Dae
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.123-130
    • /
    • 2010
  • A steering control system based on CAN(Controller Area Network) for autonomous tractor was developed to reduce duty of a central processing computer and to improve performance of steering control in terms of reduced control interval and error. The steering control system consisted of a SCU (Steering Control Unit), an EHPS system, and a potentiometer. The SCU consisted of an MCU (Micro Controller unit), an A/D converter, and a DC-DC converter, and a PID controller was used to control steering angle. The steering control system was communicated with the computer by CAN-bus. Each actuator and implement was connected to a multi-function board interfacing with the computer through a USB cable. Without CAN, control interval of the autonomous tractor was 1.5 seconds. When the CAN-based steering control system was combined with the autonomous tractor, however, control interval of the integrated system was reduced to those less than 0.05 seconds. When the autonomous tractor was operated with 1.5-s and 0.05-s control cycles at a 0.63-m/s travelling speed, the trajectories were close to straight lines for both of the control cycles. For a 1.34-m/s traveling speed, tractor trajectory was close to sine wave with a 1.5-s control cycle, but was straight line with a 0.05-s control cycle.

Study on Attitude Control System of Rotary Implement Attached on Agricultural Tractor (트랙터 로타리 작업기용 자세 제어 시스템에 관한 연구)

  • Lee, J.Y.;Go, W.;Shim, J.S.;Shin, H.C.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.427-438
    • /
    • 1998
  • In Korea, rotary implements are mainly utilized in the tillage operation. The attitude control system for rolling phenominon of tractors, which in caused due to uneven ground surfaces and sinkage of tractor wheels, is one of the most important control systems in agricultural tractors. The attitude control system of a rotary implement, attached on tractors, was designed and fabricated in this study. The control system was largely composed of four main units; a setting unit, a detection unit, a controller and a hydraulic unit. The implement was controlled by control signals from a computer proportional to controlled errors, on/off action of two directional solenoide valve and lift cylinder on the right lift rod. Response characteristic experiments for the control system fabricated in this study were carried out indoors and outdoors. The results of experiments showed the response characteristics sufficient to use as the attitude control system of rotary implements for agricultural tractors.

  • PDF

A Structural Analysis of the Complex Implements of an Agricultural Tractor using Reverse Design (역설계를 통한 트랙터 복합작업기 강도분석)

  • Lee, Choong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.82-89
    • /
    • 2019
  • This study is a structural analysis of the major components of the implements for an agricultural tractor. To develop an unpowered high-speed implement of an agricultural tractor, the modeling and analysis of the benchmarking product was calculated using 3D scanning and reverse design technologies. The tractive load was calculated using the powertrain efficiencies and soil-propelling force, which were estimated by analyzing the main frame, disc, frames, and chisel plow for the axial loading condition. The final goal of this research is to establish the design parameters and assembly technology for securing disc harrow structures and durability of life. This information will be used to analyze the new model design for domestic consumption.

Tractor Implement Attitude Control System Using Microcomputer (마이크로컴퓨터를 이용(利用)한 트랙터 작업기(作業機)의 자세제어(姿勢制御) 시스템에 관한 연구(硏究))

  • Yoo, S.N.;Suh, S.R.;Kim, D.J.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.199-208
    • /
    • 1993
  • This study was attempted to develop the eletronic-hydraulic hitch system for controlling the attitude of tractor implements and to investigate control performance of the system through experiments. Main components of the system developed in this study were reference inputs panel, inclination angle detecter, electronic controller consisted of IBM-AT PC and interfaces, electro-hydraulic directional valves and other hydraulic components and three-point hitch linkage. Experiments were carried out to investigate the response of the system to the step and sine inputs. The effects of hydraulic flow rate and dead band on control performance were analized. Attitude of the implement was controlled within 2.4-5.1 degrees to the setting attitude when the hydraulic flow rate was in the range of $0.25-1.5{\ell}/min$. And implement was controlled without rapid amplitude attenuation and phase angle change in the frequency range of 0.02-0.2Hz when the hydraulic flow rate was in the range of $0.25-1.5{\ell}/min$. Control performance of the system can be expected to be improved if the inclination angle detecter show rapid and stable output as the implement moves.

  • PDF

Effects of VHP Positions on the Steering Stability of Agricultural Tractors(I) -Derivation of Safe Region for VHP Locations- (가상(假想) 히치점의 위치(位置)가 트랙터의 조향(操向) 안정성(安定性)에 미치는 영향(影響)(I) -가상(假想) 히치점의 안전(安全) 영역(領域)에 대한 이론적(理論的) 고찰(考察)-)

  • Shin, S.I.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.2
    • /
    • pp.118-123
    • /
    • 1991
  • This study was conducted to investigate the influences of virtual hitch point (VHP) positions of a three-point hitch on the steering stability of agricultural tractors. The VHP locations were determined analytically from the linkage geometry and implement posture during the normal tillage operations. The maximum force applicable to the VHP was also determined under the given soil and power constraints. From these possible ranges of the VHP locations, a safe region for steering control was determined theoretically by using maximum applicable forces for the given tractor and implement combinations. With VHP positions within the safe region, tractor can maintain the minimum soil reaction forces, assumed 20% of the total tractor weight in this study, at the front wheels which is required for the steering control under the maximum traction conditions. This paper mainly concerns with mathematical developments for the determination of VHP locations and maximum forces applicable to the VHP for steering control. Experimental validation of the theory developed here follows as the second part of this study.

  • PDF

Development of a Draft Control System for Tractor Using a Proportional Valve (비례밸브를 이용한 트랙터 견인력제어시스템 개발)

  • Lee, S.S.;Lee, J.Y.;Mun, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.1 s.114
    • /
    • pp.9-15
    • /
    • 2006
  • Draft control is key technique in plow control system for automation of implement control system. To make the consistent draft force is an essential factor for preventing the reduction of working efficiency by tractor's slip and also improving the working efficiency. Therefore, the purpose of this study is to develop the draft sensor for draft control of plow and evaluate the usability of the algorithm of draft control system using proportional control valve. The developed draft control system could extract the draft force very well regardless of draft condition, change of setting draft force and response time in the response characteristic test. The maximum draft force at 3-Point linkage was 10,000 N and the deviation of the control system was 125.8 N in steady state condition. The developed control system worked very well with regard to the change of draft force in field and even in soil condition with soil reaction. The results of experiment showed the characteristics of response was sufficient to be used as the implement draft control system for tractor using proportional valve.

Technological Trends of Intelligent Agricultural Machinery (지능형 농기계 기술 동향)

  • Hwanseon Kim;Soyun Gong;Joongyong Rhee;Jong-Guk Lim;Wan-Soo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.80-91
    • /
    • 2023
  • The purpose of this study is to suggest the direction for the development of intelligent agricultural machinery technology in the Republic of Korea. For this purpose, intelligent technology of agricultural machinery was divided into autonomous agricultural machinery and tractor-implement intelligent communication technology. Then, a survey and analysis of a previous study of the Republic of Korea and foreign countries were conducted. GNSS-based autonomous driving technology is still widely used worldwide, and recently, as research on camera and LiDAR-based autonomous driving is actively progressing, autonomous driving technology is becoming more advanced. ISOBUS-based technology is being developed worldwide for intelligent control of tractor-attached implements, and major global agricultural machinery manufacturers are actively applying it to their products. However, although some ISOBUS technologies are being researched in the Republic of Korea, there are no cases of application on agricultural machinery yet. Therefore, to be globally competitive in the agricultural machinery manufacturing industry, there is an urgent need to advance autonomous driving technology and commercialize agricultural machinery using ISOBUS technology.

Recent Innovation and Issued in Tractor and Field Crop Machinery in North America

  • Schueller, John K.;Stout, Bill A.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.393-403
    • /
    • 1996
  • The tractors and field crop machinery used in North American are produced by a mature industry. Recent technological innovations in include machinery for spatially -variable crop production , electronics for machine control and tractor-implement communications, low-emission and alternative fuel engines , flexible power transmission, and larger and more sophisticated equipment . Trends and issues are discussed.

  • PDF

A Study on Design Standard for Paddy Field Ramp (수도 포장진입로의 설계기준에 관한 연구)

  • 김병갑;이중용;신승엽;김학주;이용복
    • Journal of Biosystems Engineering
    • /
    • v.26 no.6
    • /
    • pp.517-524
    • /
    • 2001
  • Steep and narrow ramp installed in the paddy field makes it difficult and sometimes dangerous to drive agricultural machines on it. Because agricultural machinery become larger and heavier, it is necessary to revise design standard for ramp to provide safe travel. This study was conducted to revise the design standard fur paddy field ramp, especially for its width and slope. A mathematical model predicting travelling path of a tractor on paddy field ramp and farm road was developed and simulated. To verify this model, field tests were carried out. The model could predict trvelling path with RMS Error of 12.5cm and 8.2cm, which were judged to be adoptable fur determining the width of paddy field ramp. By applying this model to 110ps tractor, which was assumed to be the largest tractor in Korea, width of paddy field ramp was determined as over 3.6m. The slope of paddy field ramp, which provided tractor with 10% of the total weight of the tractor and the mounted implement as reaction force at front wheel against ground was analyzed by considering weight transfer effect on a ramp. The result showed that adequate slope of paddy field ramp was 14°.

  • PDF