• Title/Summary/Keyword: Traction Power System

Search Result 352, Processing Time 0.038 seconds

Applicability Study of the Carson Model for the calculation of the series inductance of the power feeding lines in AC traction system (AC 전기철도 급전선 선로정수 산정시 Carson 모델 적용 검토)

  • Chung, Sang-Gi;Kwon, Sam-Young;Chang, Sang-Hoon;Chang, Dong-Uk
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.169-178
    • /
    • 2008
  • In this paper, it is shown that Carson's equation can still be applied for the calculation of the series reactance of transmission lines with no ground return current as well as the one with ground return. It is proved in the following method. First two voltage drop equations for three-phase three wire transmission line are derived, one without considering ground return and the other using Carson's equation. The impedance matrix of the two equations are different from each other. But if we put the condition of zero ground current, $I_a+I_b+I_c=0$, those two equations becomes the identical equations. Therefore even a transmission line is not grounded, its line parameters can still be obtained using the Carson's equation. It has been confused whether or not Carson's equation can be used for an ungrounded system. It is because where ever Carson's equation is shown in the book, it also says that the system has ground return current paths as a premise. It is also verified with EMTP studies on the test circuit.

  • PDF

A Study on Technology Development of High Capacity PWM Converter for Electric Vehicle (전기철도용 대용량 PWM 컨버터 기술개발에 관한 연구)

  • Han, Young-Jae;Jo, Jeong-Min;Bae, Chang-Han;Lee, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1729-1734
    • /
    • 2018
  • Recently, interest in environmentally friendly transportation systems has been increasing, and study on railway systems has been aggressively conducted. Therefore, lots of studies have been done in railway advanced countries to improve performance of PWM converter. The research on the PWM converter for railway vehicle was mainly carried out on the converter mounted on railway vehicle such as the high-speed railway and metropolitan railway. In also, a lot of study has been carried out to improve converter performance installed in the ground. The high-capacity transform used in this paper converted from AC 22.9kV to AC 590V. The converter changed from AC 590V to DC 950V. In general, in the case of rectifier, the DC power supply system has a negative impact on inverter control characteristics because it can not avoid the pulsating component. In this study, it was performed current control for high-capacity converter using Matlab Simulink. The PWM converter is normally performed through the voltage and current at starting mode, powering mode, and braking mode. In the light-load test and the on-line test, we have studied for the PWM converter characteristics. Using this research, we have founded that the converter has excellent performance.

Comparison of Control Strategies for Military Series-Type HEVs in Terms of Fuel Economy Based on Vehicle Simulation (시뮬레이션을 이용한 군용 직렬형 HEV 의 주행 전략에 따른 연비 성능 비교에 관한 연구)

  • Jung, Dae-Bong;Kim, Hyung-Jun;Kang, Hyung-Mook;Park, Jae-Man;Min, Kyoung-Doug;Seo, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Military vehicles, compared to conventional vehicles, require higher driving performance, quieter operation, and longer driving distances with minimal fuel supplies. The series hybrid electric vehicle can be driven with no noise and has high initial startup performance, because it uses only a traction motor that has a high startup torque to drive the vehicle. Moreover, the fuel economy can be improved if the vehicle is hybridized. In series hybrid electric vehicles, the electric generation system, which consists of an engine and a generator, supplies electric energy to a battery or traction motor depending on the vehicle driving state and battery state of charge (SOC). The control strategy determines the operation of the generation system. Thus, the fuel economy of the series hybrid electric vehicle relies on the control strategy. In this study, thermostat, power-follower, and combined strategies were compared, and a 37% improvement in the fuel economy was implemented using the combined control strategy suggested in this study.

Design of Motor-driven Traveling System for High Clearance Working Machinery based on Tractive Performance and Hill Climbing Ability (견인 및 등판 성능을 통한 고소작업기계의 모터 주행장치 설계)

  • Lee, Sangsik;Jang, Seyoon;Kim, Taesoo;Nam, Kyoucheol;Park, Wonyeop
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.257-265
    • /
    • 2016
  • In this study, an optimal design for motor-driven track type traveling system applied into high clearance working machineries in orchard is proposed. Tractive performance and hill climbing ability were predicted and evaluated for the optimal motor traveling system by taking into account of soil characteristics in orchard utilizing the high clearance working machineries. Design criteria for tractive performance were based on the traction force calculated from tractive effort subtracted by motion resistance, while hill climbing ability had its design criteria that fulfill the climbing 20% slope ground at a speed of 3km/h. Based on the evaluation results of traction and climbing ability, two DC48V, 4500rpm, 1.6kW AC motors were independently applied to both left and right side of orbits; each motor is designed to transmit power on driving sprocket of track type traveling system via 50:1 reduction gear ratio. The motor-driven track type traveling system developed in the study found to have 396 kgf of tractive force, which is 12.5% higher than climbing resistance at orchard soil having 20% slope ground (352 kgf), demonstrating sufficient tractive performance and hill climbing ability.

A Development of Effective Educational Simulator for Electronic Control System of Automobile Chassis (섀시 전자제어 시스템의 효과적인 교육을 위한 능동형 시뮬레이터의 개발)

  • Son, Il-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3326-3333
    • /
    • 2012
  • In this paper, an educational simulator of automobile chassis electronic control system was developed. The developed system is composed of three parts, a driving condition control & monitoring system, a chassis electronic system monitoring & analysis system, and a virtual simulator & educational multimedia contents. The driving condition control & monitoring system has a commercial real car simulator, hydraulic equipments for representing driving conditions, and a remote control and monitoring system. In the chassis electronic system monitoring & analysis system, information of various sensors and actuators applied to the system can be monitored by Labview programs. Finally, the suggested virtual simulator and the multimedia with 2D Flash and 3D animations can be used effectively by means of teaching materials.

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.

A study on the wire reduction design and effect analysis for the train vehicle line (화물열차 분산제어시스템 개발에 관한 연구)

  • Lee, Kangmi;Lee, Jaeho;Yoon, Yong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.778-784
    • /
    • 2017
  • In this paper, we propose wired and wireless distributed control systems designed to improve the freight logistics efficiency and verify wired distributed control systems. The verification condition required that 50 cargo vehicles be connected and operated to travel 21 km from Busan Sinhang station to Jinlye Station at an average speed of about 100km/h. The verification results show that the traction output and braking output of the control and controlled cars are dispersed by the wired distributed control system. The application is expected to more than double the efficiency of the logistics compared to the existing freight transportation system. However, in the case of the wired distributed control system, cable installation and maintenance are difficult, and it is impossible to change the combination of freight vehicles. Through the verification of the wired distributed control system, the applicability of distributed control systems to freight vehicles in Korea was confirmed and the system was further developed to produce a wireless distributed control system. In order to apply the wireless distributed control system, a propagation environment analysis for the ISM band was performed in the testbed and, as a result, it was confirmed that Wifi technology using the ISM band could be utilized. In order to use the WDP (Wireless Distributed Power) devices newly installed in the target vehicles, the transmission / reception control signals associated with the propulsion / braking / total control devices are defined. In the case of wireless distributed control systems, the convenience of their application and operation is guaranteed, but reliability and emergency safety measures should because of the dependence of the control of the vehicle on radio signals.

Trends in safety improvement technologies for an electric propulsion system of eco-friendly ships (친환경 선박용 전기추진시스템 안전성 향상 기술개발 동향)

  • Kim, Sehwan;Choi, Gilsu;Lee, Jae Suk
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.556-564
    • /
    • 2021
  • This paper presents trends of safety improvement technologies for an electric propulsion system of eco-friendly ships. As an effort to reduce a green house effect, demands for eco-friendly ships have been increased. An energy storage system (ESS) is one of key systems in an eco-friendly ship and a lithium-ion battery generally used in an ESS system due to its high power density and efficiency. However, a lithium-ion battery is considered as one of reasons for ESS fire hazard. Since a fire extinguishing facility is especially limited in the ocean, safety issue in an eco-friendly ship is important. In this paper, recent safety improvement technologies for traction motors, ESS batteries and structures for eco-friendly ships are presented.

Shape Design of IPMSM for HEV Traction Motor to Reduce Usage of Permanent Magnet and to Ensure Maximum Output Power (영구자석 사용량 저감과 최대출력 확보를 위한 HEV 구동용 IPMSM의 형상설계)

  • Jung, Jae-Woo;Lee, Tae-Guen;Lee, Jung-Jong;Lee, Geun-Ho;Hong, Jung-Pyo;Kim, Ki-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.607_608
    • /
    • 2009
  • 일반적으로 매입형 영구자석 동기전동기는 영구자석의 사용량이 많을수록 돌극비를 향상 시킬 수 있으므로 발생토크 중 릴럭턴스 토크의 비중을 키울 수 있다. 이는 토크 발생 시 입력전류를 저감시켜 동손이 감소하고 효율을 향상시키는 효과를 기대할 수 있다. 하지만 최근에 희토류계 영규자석의 가격 상승으로 인하여 영구자석 형 전동기 개발에 있어 제약이 따르는 상황이며 가격 경쟁력을 위하여 영구자석의 사용량을 저감시키는 노력을 기울이고 있다. 본 논문에서는 HEV 구동용 매입형 영구자석 동기전동기를 대상으로 영구자석 사용량 저감 설계에 대하여 다루고자 한다. 영구자석 사용량 저감은 영구자석의 두께를 변경시켜서 검토하였으며 실험을 통한 영구자석의 감자특성을 검토하여 최적의 두께를 결정하였다. 영구자석 두께 저감에 따라 감소한 최대출력 확보를 위하여 회전자의 형상설계를 기계적 구조해석과 병행하여 수행하였다. 최종으로 설계된 모델의 특성은 Prototype과 비교하여 성능만족 여부 및 영구자석 사용량 변화를 확인하였다.

  • PDF

Equivalent Circuit Analysis of Interior Permanent Magnet Synchronous Motor Considering Armature Reaction (전기자 반작용을 고려한 매입형 영구자석 동기전동기의 등가회로 해석)

  • Jung, Jae-Woo;Lee, Jung-Jong;Kwon, Soon-O;Hong, Jung-Pyo;Kim, Ki-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.756-757
    • /
    • 2008
  • Interior permanent magnet synchronous motor (IPMSM) which has high power density is usually applied to traction motor for hybrid electric vehicle. In order to analyze characteristics of IPMSM, d- and q-axis equivalent circuit analysis is generally used. However, the line current of IPMSM calculated by d- and q-axis equivalent circuit analysis differ from measured value. This error is mainly appeared under the flux weakening control. In order to reduce the error between calculated and measured line current, no-load linkage flux which is calculated with considering saturation of magnetic core and armature reaction is applied to characteristic analysis. The result of line current calculated by the method dealt with in this paper is verified by comparison with experimental results.

  • PDF