• Title/Summary/Keyword: Traction Power System

Search Result 352, Processing Time 0.027 seconds

Modulation Technique of Dual Active Bridge Converter to Improve Efficiency of Smart Transformers in Railroad Traction System (철도차량용 지능형 변압기 손실 저감을 위한 Dual Active Bridge 컨버터의 Modulation 기법 연구)

  • Kim, Sungmin;Lee, Seung-Hwan;Kim, Myung-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.727-735
    • /
    • 2016
  • Smart transformers are effective at reducing the weight and increasing the efficiency of traction systems for railroad applications. A smart transformer generally consists of rectifier modules and the Dual-Active-Bridge (DAB) converter modules. The efficiency of the smart transformer depends on not only the electrical characteristics, but also on the control method of the converter modules. Especially, a DAB converter has a high order degree of freedom of voltage modulation to control the power transferred through the high frequency transformer, and a voltage modulation method, are very critical for the efficiency of the DAB converter. This paper proposes a new voltage modulation method for the DAB converter to increase the efficiency in the low/medium power transfer condition. The proposed modulation method controls the reactive power in the high frequency transformer, making it zero. And, the switching loss is dramatically reduced by using the received converter module as a diode rectifier. The feasibility of the proposed modulation method is verified by computer simulation of the 900Vdc DAB converter power control.

Analysis of Voltage Drop under Extended Feeding in KyungBu High Speed Line (II) (경부고속선의 전력공급 안정성 검토를 위한 연장급전 조건의 전압강하 검토 (II))

  • Kim, Joo-Rak;Chang, Sang-Hoon;Park, Hyun-June;Lee, Young-Heum
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1984-1990
    • /
    • 2011
  • This paper presents the simulation of traction power supply system for the evaluation of voltage drop in Kyungbu high speed line. This simulation is performed in circumstance of extended feeding through vicinity substation. Extended feeding should be considered from design of system. Therefore, voltage drop at extended feeding must be accepted against regulation. In this paper, voltage drop is evaluated under condition of extended feeding targeting section from Shinchungju and Pyungtaek S/S.

  • PDF

A study on the anti-freezing of light weight electric traction system testing road (경량전철 시스템 선로 결빙방지에 관한 연구)

  • Woo, Jae-Ho;Han, Kyu-Il;Kim, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2256-2261
    • /
    • 2008
  • The electric snow melting and deicing system by electric heating cable which is adopted in this study is a part of road facilities to keep surface temperature of the road higher than freezing point of water for melting the snow or ice accumulated on it. The electric heating cables are buried under paved road at a certain depth and a certain pitch and operated automatically and manually. Design theory, amount of heating, and installation standard vary according to economic situation, weather condition, and installation place. A main purpose of this study is figuring out the appropriate range of required heat capacity and installation depth and pitches for solving snowdrifts and freezing problems with minimum electric power consumption. This study was performed under the ambient air temperature($-2^{\circ}C$, $-5^{\circ}C$), the pitches of the electric heating cables (200 mm, 300 mm), heating value ($250\;W/m^2$, $300\;W/m^2$, $350\;W/m^2$).

  • PDF

An Improved Central 60° Synchronous Modulation for High Transient Performance with PMSM Stator Flux Control Used in Urban Rail Transit Systems

  • Fang, Xiaochun;Lin, Fei;Yang, Zhongping
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.542-552
    • /
    • 2016
  • Central 60° synchronous modulation is an easy pulse-width modulation (PWM) method to implement for the traction inverters of urban rail trains at a very low switching frequency. Unfortunately, its switching patterns are determined by a Fourier analysis of assumed steady-state voltages. As a result, its transient responses are not very good with over-currents and high instantaneous torque pulses. In the proposed solution, the switching patterns of the conventional central 60° modulation are modified according to the dynamic error between the target and actual stator flux. Then, the specific trajectory of the stator flux and current vector can be guaranteed, which leads to better system transients. In addition, stator flux control is introduced to get smooth mode switching between the central 60° modulation and the other PWMs in this paper. A detailed flow chart of the control signal transmission is given. The target flux is obtained by an integral of the target voltage. The actual PMSM flux is estimated by a minimum order flux state observer based on the extended flux model. Based on a two-level inverter model, improved rules in the α-β stationary coordinate system and equations of the switching patterns amendment are proposed. The proposed method is verified by simulation and experimental results.

Position Controller for Clutch Drive System of PHEV(Plug in Hybrid Electric Vehicle) (PHEV(Plug in Hybrid Electric Vehicle)의 클러치 구동 시스템을 위한 BLDC 모터의 위치제어기)

  • Jin, Yong-Sin;Shin, Hee-Keun;Kim, Hag-Wone;Mok, Hyung-Soo;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.166-173
    • /
    • 2012
  • Plug-in Hybrid Electric Vehicle is driven by the engine, the primary traction motor, and the secondary auxiliary motor generating the electric power for battery charging. Secondary auxiliary motor should be connected to the engine or separated from the engine by the clutch system. This paper presents the position controller of the BLDC motor for the clutch system of Plug-in Hybrid Electric Vehicle. The BLDC motor can be applied to the clutch system in spite of it's low accuracy of the position control due to high gear ratio between the clutch and the motor. Since the attachment and the detachment between the motor and the engine should be carried out within 0.3 seconds, the position controller with fast acceleration and deceleration is implemented. For the torque control with braking operation for the BLDC motor, the modified bipolar PWM method with low current ripple compared to the conventional unipolar PWM is presented. The position control performance of the BLDC motor for the clutch system is verified through the simulation and experiments.

Optimal current angle control method of interior permanent magnet Synchronous Motors (매입형 영구자석 동기전동기의 최적 전류각 제어)

  • 김명찬;김종구;홍순찬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.352-357
    • /
    • 1996
  • Recently, Permanent Magnet Synchronous Motor(PMSM) drives are widely used for industrial applications due to its high efficiency and high power factor control strategy. PMSM generally have two classifications such as the SPMSM(Surface Permanent Magnet Synchronous Motors) and IPMSM(Inter Permanent Magnet Synchronous Motors). IPMSA has economical merits over SPMSM in higher speed range, mechanical robustness, and higher power rate by the geometric difference. The maximum torque operation in IPMSM is realized by the current angle control which is to utilize additional reluctance torque due to a rotor saliency. In traction, spindle and compressor drives, constant power operation with higher speed range are desirable. This is simply achieved in the DC motor drives by the reduction of the field current as the speed is increased. However, in the PMSM, direct control of the magnet flux is not available. The airgap flux can be weakened by the appropriate current angle control to demagnetize. In this paper, the control method of optimal current vector in IPMSM is described in order to obtain the maximum torque or maximum output with the speed and load variations. The applied algorithm is realized by the proto system with torque and speed control Experimental results show this approach is satisfied for the high performance servo applications. (author). 6 refs., 9 figs., 1 tab.

  • PDF

Video Image Analysis in Accordance with Power Density of Arcing for Current Collection System in Electric Railway (전기철도 집전장치의 아크량에 따른 비디오 이미지 분석)

  • Park, Young;Lee, Kiwon;Park, Chulmin;Kim, Jae-Kwang;Jeon, Ahram;Kwon, Sam-Young;Cho, Yong Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1343-1347
    • /
    • 2013
  • This paper presents an analysis methods for current collection quality in catenary system by means of video image based monitoring system. Arcing is the sparking at the interface point between pantograph and contact wire when the electric trains have traction current values at speed. Percentage of arcing at maximum line speed is measurable parameters for compliance with the requirements on dynamic behaviour of the interface between pantograph and contact wire in accordance with requirement of IEC and EN standards. The arc detector and video is installed on a train aim at the trailing contact strip according to the travel direction. The arc detector presented and measured verity of value such as the duration and power density of each arc and the video image is measured a image when the arc is occurred in pantograph. In this paper we analysis of video image in accordance with power density of arcing from arc detector and compared with video image and power density of arcing so as to produce quality of arcing from image.

Modeling for the Analysis of Rail Potential in the DC Railway Power System (직류전기철도 급전시스템에서 레일전위 해석을 위한 모델링)

  • Cho, Woong-Ki;Choi, Kyu-Hyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.138-146
    • /
    • 2010
  • DC railway power supply system generally uses the running rails as negative-polarity return conductor for traction load current, and the induced rail potential and stay current cause serious problems to any electrified matter in the underground and also safety problems to human body. This paper presents a new algorithm for the analysis of the rail potential and the stray current in DC railway power system operated under independent/parallel power feeding mode. The effect of load current fluctuation during train operation is also calculated by using TPS(Train Performance Simulation) program to analysis the variation of the railway potential and stray current along railway track. Simulation program is developed based on the proposed algorithm and case studies are provided.

Investigation of the IPMSM Parameter Variation Effect to the System Operation Characteristics of the Multi Inverter Driven High Speed Train System (다중 인버터 구동 고속전철 시스템의 IPMSM 파라미터 변동에 따른 운전 특성 고찰)

  • Park, Dong-Kyu;Jin, Kang-Hwan;Chang, Chin-Young;Kim, Sung-Je;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.193-199
    • /
    • 2011
  • The next generation domestic high speed railway system is a power distributed type and uses vector control method for motor speed control. Nowadays, inverter driven induction motor system is widely used. However, recently PMSM drives are deeply considered as a alternative candidate instead of an induction motor driven system due to their advantages in efficiency, noise reduction and maintenance. The next-generation high-speed train is composed of 2 converter units, 4 inverter units, and 4 Traction Motor units. Each motor is connected to the inverter directly. In this paper, the effects of IPMSM parameter variation to the system operation characteristics of the multi inverter driven high speed train system are investigated. The parallel connected inverter input-output characteristics are analyzed to the parameter mismatches of the IPMSM in 1C1M control using Matlab/Simulink, then the reliability of the simulation results are verified through experimental results.

Backstepping Control for Multi-Machine Web Winding System

  • Bouchiba, Bousmaha;Hazzab, Abdeldjebar;Glaoui, Hachemi;Med-Karim, Fellah;Bousserhane, Ismail Khalil;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.59-66
    • /
    • 2011
  • This work treat the modeling and simulation of non-linear dynamic behavior of a web winding process during traction. We designate by a winding process any system applying the cycles of unwinding, transport, treatment, and winding to various flat products. This system knows several constraints, such as the thermal effects caused by the frictions, and the mechanical effects provoked by metal elongation, that generates dysfunctions due to the influence of the process conditions. Several controllers are considered, including Proportional-integral (PI) and Backstepping control. This paper presents the study of Backstepping controls strategy of the winding system. Our winding system is simulated in MATLAB SIMULINK environment, the results obtained illustrate the efficiency of the proposed control with no overshoot, and the rising time is improved with good disturbances rejections comparing with the classical control law.