• Title/Summary/Keyword: Traction Power Supply

Search Result 108, Processing Time 0.03 seconds

A Study on DC Traction Power Supply System Using PWM Converter (PWM컨버터를 적용한 경전철 전력공급시스템에 관한 연구)

  • Kim, Joorak;Park, Chang-Reung;Park, Kijun;Kim, Joo-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.250-254
    • /
    • 2016
  • Currently, power conversion system which converts AC to DC Power is applied in domestic urban railway. The diode rectifier is used in most of them. However the diode rectifier can not control the output voltage and can not regenerate power as well. On the other hand, PWM (pulse width modulation) converter using IGBT (isolated gate bipolar transistor) can control output voltage, allowing it to reduce the output voltage drop. Moreover the Bi-directional conduction regenerates power which does not require additional device for power regeneration control. This paper compared the simulation results for the DC power supply system on both the diode rectifier and the PWM converter. Under the same load condition, simulation circuit for each power supply system was constructed with the PSIM (performance simulation and modeling tool) software. The load condition was set according to the resistance value of the currently operating impedance of light rail line, and the line impedance was set according to the distance of each substations. The train was set using a passive resistor. PI (proportional integral) controller was applied to regulate the output voltage. PSIM simulation was conducted to verify that the PWM Converter was more efficient than the diode rectifier in DC Traction power supply system.

A Control Method of Phase Angle Regulator for Parallel-Feeding Operation of AC Traction Power Supply System (교류전기철도 병렬급전 운영을 위한 위상조정장치 제어기법)

  • Lee, Byung Bok;Choi, Kyu Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.672-678
    • /
    • 2020
  • The parallel-feeding operation of an AC traction power supply system has the advantages of extending the power supply section and increasing the power supply capacity by reducing the voltage drop and peak demand caused by a train operation load. On the other hand, the parallel-feeding operation is restricted because of the circulating power flow induced from the phase difference between substations. Moreover, the power supply capacity is limited because of the unbalanced substation load depending on the trainload distribution, which can be changed by the train operation along the railway track. This paper suggests a Thyristor-controlled Phase Angle Regulator (TCPAR) to reduce the circulating power flow and the unbalanced substation load, which depends on the phase difference and the trainload distribution and provides a feasibility study. A dedicated control model of TCPAR is also provided, which uses substation power supplies as the input to control the circulating power flow and an unbalanced substation load depending on the phase difference and the trainload distribution. Simulation studies using PSCAD/EMTDC shows that the proposed TCPAR control model can reduce the circulating power flow and the unbalanced substation load depending on the phase difference and the trainload distribution. The proposed TCPAR can extend the parallel-feeding operation of an AC traction power system and increase the power supply capacity.

Computer Algorithm for the Loadflow of the DC Traction Power Supply System (도시철도의 DC급전시스템 해석 알고리즘)

  • 정상기;홍재승
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.78-85
    • /
    • 2000
  • Computer algorithms for the loadflow of the DC traction power supply system are examined. Algorithms to solve the nodal equation are reviewed and the two iterative methods to solve the nonlinear nature of the loadflow are analyzed and tested, which are so called conductance matrix method and current vector iterative mettled. The result of the analysis tells that the current vector iterative method makes faster convergency and needs less computing time, and it is verified by the test running of the programs based on each of the iterative methods.

  • PDF

An Algorithm to Analyze Rail Potential Rise in DC Traction Power Supply System (레일전위상승 분석을 위한 컴퓨터 알고리즘)

  • Chung, Sang-Gi;Kim, Hyung-Chul;Jung, Ho-Sung;Kwon, Sam-Young
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.687-693
    • /
    • 2009
  • An algorithm and a computer software are developed for the analysis of rail potential rise. The algorithm is intended to be integrated with the traction power system simulation program. In the algorithm, rail potentials are obtained by two step process. First the injection currents to the negative rail are obtained from load-flow study. In the next step, a network consisting of negative rail and the injection currents are constructed. Leakage resistance to ground are added to the network. And the network is analyzed for rail potentials. A software is developed to verify the validity of the algorithm. The result of the software is compared with the Simulink/SymPower circuit analysis result. The differences between the two results are with the acceptable range. The advantage of this algorithm is that it can be integrated with the existing traction power supply simulation program easily, which usually ignores negative rail's leakage resistance.

Ground fault protective relaying schemes for DC traction power supply system (비접지 DC 급전계통에서 전류형 지락보호계전 방법)

  • 정상기;정락교;이성혁;김연수;조홍식
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.412-417
    • /
    • 2004
  • In urban rail transit systems, ground faults in the DC traction power supply system are currently detected by the potential relay, 64P. Though it detects the fault it cannot identify the faulted region and therefore the faulted region could not be isolated properly. Therefore it could cause a power loss of the trains running on the healthy regions and the safety of the passengers in the trains could be affected adversely. Two new ground fault protective relay schemes that can identify the faulted region are presented in this paper. A current limiting device, called Device X, is newly introduced in both system, which enables large amount of ground fault current flow upon the positive line to ground fault. One type of the relaying schemes is called directional and differential ground fault protective relay which uses the current differential scheme in detecting the fault and uses the permissive signal from neighboring substation to identify the faulted region correctly. The other is called ground over current protective relay. It is similar to the ordinary over current relay but it measures the ground current at the device X not at the power feeding line, and it compares the current variation value to the ground current in Device X to identify the correct faulted line. Though both type of the relays have pros and cons and can identify the faulted region correctly, the ground over current protective relaying scheme has more advantages than the other.

Estimation and Measurement of the Traction return current on the electrified Gyeongbu line.

  • Kim, Y.K.;Yang, D.C.;Han, M.S.;Ryu, C.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.99.5-99
    • /
    • 2001
  • This study presents a simulation of the traction return current based on $2{\times}25kV$ power supply system in order to determine the impedance bond intensity of impulse type track circuit on the electrified Gyeongbu line. The results of the simulation enables us to measure the precise intensity of catenary current that returns to the substation through KTX (Korean Train Express) operated by $2{\times}25kV$ power supply system with common earth network. The combination of $2{\times}25kV$ and common earth network established on the electrified Gyeongbu line for the first time in Korea. We show that the relationships among the traction return current, earth current, and catenary current, and catenary current can be applied to this line in order to determine the optimal impedance bond intensity ...

  • PDF

Estimation of Traction return current and Impedance on Kyoungbu electrification line (경부선 전철화 구간에서의 귀선 전류 및 임피던스 예측)

  • 김용규;양도철;유창근
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.123-126
    • /
    • 2001
  • This study presents the simulation of the traction return current based on 2${\times}$25kV power supply system in order to determine the impedance bond intensity of impulse type track circuit on the Kyoungbo electrification line. The results of simulation enables us to measure the precise intensity of catenary current, returning to the substation through KTX (Korean Train Express) operated by 2${\times}$25kV power supply system with common earth network. In the wake of establishing 2${\times}$25kV and common earth network used in Korea for the first time, in particular, it is possible to determine the impedance bond intensity of impulse type track circuit, which is applicable to the Kyoungbo electrification line by specifying the relations among the traction return current, earth current, and catenary current.

  • PDF

A Study on Capacity Calculation of Power Supply System for Light Rail Transit (경량전철 전력공급시스템의 용량 산정에 관한 연구)

  • 백병산;서광덕;김종구
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.696-703
    • /
    • 2000
  • This paper describes the capacity calculation of power supply system for light Rail Transit Three factors are considered for the design i.e. substation arrangements, line configuration and substation power capacity. In this study, we considered all of them for capacity calculation of power supply system for LRT. At first DC-fed-traction system is introduced on an outline, a characteristics of train and fed network, and design method of substation arrangements. Optimal design procedures are described, and program for capacity calculation of the system is presented. In addition, the computer simulated results are computed with the conventional simple calculation method.

  • PDF

A study on energy regeneration of power supply for DC electric traction system (직류전철용 전력공급 장치의 에너지희생에 관한 연구)

  • Bang Hyo-Jin;Jang Su-jin;Song Sang-Hun;Won Chung-Yuen;Kim Yong-Ki;Ahn yu-Bok
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.439-442
    • /
    • 2004
  • This paper described a dc power system, which can generate the excessive do power form do bus line to ac source in substation for traction system. The proposed regeneration inverter system for dc traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation.

  • PDF

The Study about Development and Consideration of Urban Railroad Vehicle Propulsion Control Device (도시철도차량 추진제어시스템 고찰 및 개선에 대한 연구)

  • Lee, Mi-Jeong;Lee, Hyeong-Woo;Ha, Jong-Eun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2323-2328
    • /
    • 2011
  • There have been many changes in Subway train types since SeoulMetro opened the Line No.1 in 1974. Propulsion control device has changed many times following the generations of control method from resistance control method which uses large resistor for the traction motor control to chopping control which uses power semiconductors and finally to inverter control. Railroad vehicle propulsion control device refers to devices such as converter/inverter which supply power for subway operation, power conversion equipment like small switching-mode power supply and traction motor. In this paper, we will analyze every part of railroad vehicle propulsion control device of SeoulMetro so we can find problems in the subway operation. And we will present propulsion control device model which makes minimized failures, efficient maintenance possible when replacing railroad vehicle later. By doing this, we hope to ensure stability and improve energy efficiency to the top.

  • PDF