• Title/Summary/Keyword: Traction Jump Error

Search Result 2, Processing Time 0.016 seconds

Remeshing Criterion for Large Deformation Finite Element Analyses Based on the Error Calculation (오차계산에 기초한 대변형 유한요소 해석에서의 요소망 재구성 기준)

  • 김형종;김낙수
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.92-104
    • /
    • 1995
  • It often happens some elements are so largely distorted during a large-deformation finite element analysis that further calculation becomes impossible or the approximation error increases rapidly. This problem can be overcomed only by remeshing at several suitable stages. The present study aimed to establish the criterion based on the error estimators, and examined in the simulation and posterior error analysis of ring compression test to demonstrate the usefulness of them. The distribution of each error estimator and its variation during deformation were investigated. All the error estimators were increased monotonously with deformation and decreased rapidly at remeshing stage. It was shown that the error estimators suggested in this study are good measures as remeshing criterion for large deformation finite element analyses.

  • PDF

RECENT DEVELOPMENT OF IMMERSED FEM FOR ELLIPTIC AND ELASTIC INTERFACE PROBLEMS

  • JO, GWANGHYUN;KWAK, DO YOUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.65-92
    • /
    • 2019
  • We survey a recently developed immersed finite element method (IFEM) for the interface problems. The IFEM uses structured grids such as uniform grids, even if the interface is a smooth curve. Instead of fitting the curved interface, the bases are modified so that they satisfy the jump conditions along the interface. The early versions of IFEM [1, 2] were suboptimal in convergence order [3]. Later, the consistency terms were added to the bilinear forms [4, 5], thus the scheme became optimal and the error estimates were proven. For elasticity problems with interfaces, we modify the Crouzeix-Raviart based element to satisfy the traction conditions along the interface [6], but the consistency terms are not needed. To satisfy the Korn's inequality, we add the stabilizing terms to the bilinear form. The optimal error estimate was shown for a triangular grid. Lastly, we describe the multigrid algorithms for the discretized system arising from IFEM. The prolongation operators are designed so that the prolongated function satisfy the flux continuity condition along the interface. The W-cycle convergence was proved, and the number of V-cycle is independent of the mesh size.