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ABSTRACT. We survey a recently developed immersed finite element method (IFEM) for the
interface problems. The IFEM uses structured grids such as uniform grids, even if the interface
is a smooth curve. Instead of fitting the curved interface, the bases are modified so that they
satisfy the jump conditions along the interface.

The early versions of IFEM [1, 2] were suboptimal in convergence order [3]. Later, the
consistency terms were added to the bilinear forms [4, 5], thus the scheme became optimal and
the error estimates were proven.

For elasticity problems with interfaces, we modify the Crouzeix-Raviart based element to
satisfy the traction conditions along the interface [6], but the consistency terms are not needed.
To satisfy the Korn’s inequality, we add the stabilizing terms to the bilinear form. The optimal
error estimate was shown for a triangular grid.

Lastly, we describe the multigrid algorithms for the discretized system arising from IFEM.
The prolongation operators are designed so that the prolongated function satisfy the flux conti-
nuity condition along the interface. The W-cycle convergence was proved, and the number of
V-cycle is independent of the mesh size.

1. INTRODUCTION

To solve elliptic problems having an interface using finite element methods, it is a common
practice to use fitted grid to resolve the smooth interface because unfitted grid yields suboptimal
results [7]. However, in recent years, there have been a trend of using unfitted grids for such
problems.
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The purpose of this paper is to give a survey of recent developments in finite element meth-
ods for interface problems using unfitted grids. Some of early attempts in this direction are
given in the name of XFEM in [8, 9, 10, 11, 12], where they added extra degrees of freedom
and/or often used grid refinement near the interface. These methods were mainly designed
to resolve crack singularities of solid mechanics problems. Another class of methods, called
immersed finite element method(IFE or IFEM) were introduced by Li et al. [1, 2], where they
modify the P1 conforming basis function on unfitted meshes. The modification of basis seems
to replace the role of fitting the grids. This method was extended to the case of Crouzeix-
Raviart P1 nonconforming finite element method [13] by Kwak et al. [14].

In early investigation, Li et al. [1, 2] only used modified P1 conforming basis functions
for the same bilinear form as the conventional FEM, and showed the local interpolation error
estimate only, assuming high regularity of solutions. By looking at the numerical examples
provided by them, the schemes seemed to work for certain cases, but later turned out that
the results are suboptimal in general [3]. See [4, 5] where its remedy is suggested. The reason
turned out to be that the consistent term errors in the P1 conforming case cannot be bounded by
O(h) when the interface becomes too thin [15]. Thus the consistent terms of the discontinuous
Galerkin methods (DG)[16, 17, 18] are needed in the bilinear form. Still, the Crouzeix-Raviart
P1 nonconforming FEM based methods suggested by Kwak et al. [14] work well. Also, the
case of nonhomogeneous jumps is considered in [19, 20].

Similar idea was applied to the elasticity problems. Lin et al. [21] have developed a numeri-
cal scheme based on P1/Q1 conforming finite elements, but it turns out that P1/Q1 conforming
IFEM basis functions are not uniquely determined for some range of parameters. So they can-
not be used to solve elasticity problems in general. Also, the locking phenomena happens as
the Lamé constant λ becomes large. Lin et al. [22] have developed an IFEM based on the
rotated Q1 nonconforming element to solve problems with interface, but no analysis is given.
Finally, the triangular case with optimal error estimate was given in [6].

The rest of this paper is organized as follows. In section 2, we describe the scalar model
problems having interface and define two kinds of schemes (for triangle grids only for simplic-
ity) and show the optimality of the corrected scheme by consistency terms and suboptimality
in case of no consistency terms. In section 3, we consider the 2D elasticity problems with
modified Crouzeix-Raviart nonconforming basis with stability terms. We show the optimal
solvability of the system. In Section 4, we develop the multigrid algorithms for IFEM. We
prove the W-cycle convergence and we show that the V-cycle iterations remain bounded as
meshsize decreases. In each section, we provide numerical simulations.

2. SCALAR ELLIPTIC PROBLEMS

Let Ω be a connected, convex polygonal domain in R2 which is divided into two subdomains
Ω+ and Ω− by a C2 interface Γ = ∂Ω+∩∂Ω−, see Figure 1. We assume that β(x) is a positive
function bounded below and above by two positive constants. Although our theory applies to
the case of nonconstant β(x), we assume β(x) is piecewise constant for the simplicity of
presentation: there are two positive constants β+, β− such that β(x) = β+ on Ω+ and β(x) =
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Ω−
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Γ

FIGURE 1. A domain Ω with interface

β− on Ω−. Consider the following elliptic interface problem

−∇ · (β(x)∇u) = f in Ωs (s = +,−) (2.1)
u = 0 on ∂Ω (2.2)

with the jump conditions along the interface

[u]Γ = 0,

[
β(x)

∂u

∂n

]
Γ

= 0, (2.3)

where f ∈ L2(Ω) and u ∈ H1
0 (Ω) and the bracket [·]Γ means the jump across the interface:

[u]Γ := u|Ω+ − u|Ω− .

For any domain D, we let Wm
p (D) be the usual Sobolev space with (semi)-norms and de-

noted by | · |m,p,D and ∥ · ∥m,p,D. When p = 2, we write Hm(D) := Wm
2 (D) with the (semi)-

norms | · |m,D and ∥ · ∥m,D. Let H1
0 (Ω) be the subspace of H1(Ω) with zero trace on the

boundary.
Let {Th} be the usual shape regular triangulations of the domain Ω by the triangles of max-

imum diameter h which may not be aligned with the interface Γ. For each T ∈ Th, let

W̃m
p (T ) := {u ∈ L2(T ) : u|T∩Ωs ∈ Wm

p (T ∩ Ωs), s = +,−}, p ≥ 1, m ≥ 0

with norms;

|u|2m,p,T := |u|2m,p,T∩Ω+ + |u|2m,p,T∩Ω− ,

∥u∥2m,p,T := ∥u∥2m,p,T∩Ω+ + ∥u∥2m,p,T∩Ω− .

Now we define W̃m
p (Ω) to be the space of all functions u ∈ L2(Ω) such that u|T ∈ W̃m

p (T )

for all T ∈ Th equipped with the broken (semi)-norms |u|
W̃m

p (Ω)
:=

(∑
T |u|2m,p,T

)1/2
and

∥u∥
W̃m

p (Ω)
:=

(∑
T ∥u∥2m,p,T

)1/2
. When p = 2, we write H̃m(D) = W̃m

p (D) for D = T,Ω
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(a) Fitted grid
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(b) Uniform Grid

and denote their (semi)-norms by |u|
H̃m(D)

and ∥u∥
H̃m(D)

. We also need some subspaces of

H̃2(T ) and H̃2(Ω) satisfying the jump conditions:

H̃2
Γ(T ) :=

{
u ∈ H1(T ) : u|T∩Ωs ∈ H2(T ∩ Ωs), s = +,−,

[
β
∂u

∂n

]
Γ

= 0 on Γ ∩ T

}
H̃2

Γ(Ω) := {u ∈ H1
0 (Ω) : u|T ∈ H̃2

Γ(T ), ∀T ∈ Th}.
Throughout the paper, the constants C,C0, C1, etc., are generic constants independent of the

mesh size h and functions u, v but may depend on the problem data β, f and Ω, and are not
necessarily the same on each occurrence.

The usual weak formulation for the problem (2.1) - (2.3) is: Find u ∈ H1
0 (Ω) such that∫

Ω
β(x)∇u · ∇vdx =

∫
Ω
fvdx, ∀v ∈ H1

0 (Ω). (2.4)

We have the following existence theorem for this problem [23, 24].

Theorem 2.1. Assume that f ∈ L2(Ω). Then the variational problem (2.4) has a unique
solution u ∈ H̃2(Ω) which satisfies

∥u∥
H̃2(Ω)

≤ C∥f∥L2(Ω).

2.1. P1-immersed finite element methods. We briefly review the immersed finite element
space based on the P1 - Lagrange basis functions ([1, 2]). Let {Th} be the usual quasi-uniform
finite element triangulations of the domain Ω. We call an element T ∈ Th an interface element
if the interface Γ passes through the interior of T , otherwise we call it a noninterface element.
Let T I

h be the collection of all interface elements. We assume that the interface meets the edges
of an interface element at no more than two points.

We construct the local basis functions on each element T of the partition Th. For a noninter-
face element T ∈ Th, we simply use the standard linear shape functions on T whose degrees of
freedom are functional values on the vertices of T , and use Sh(T ) to denote the linear spaces
spanned by the three nodal basis functions on T :

Sh(T ) = span{ϕi : ϕi is the standard linear shape function }
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We let Sh(Ω) denote the space of usual continuous, piecewise linear polynomials with vanish-
ing boundary values.

Now we consider a typical interface element T ∈ T I
h whose geometric configuration is

given as in Fig. 2. Here the curve between the two points D and E is a part of the interface
and DE is the line segment connecting the intersections of the interface and the edges.

A3

A1 A2e3

e1e2

E

T−

T+

D

Γ

FIGURE 2. A typical interface triangle

We construct piecewise linear basis functions ϕ̂i, i = 1, 2, 3 of the form

ϕ̂i(X) =

{
a+ + b+x+ c+y, X = (x, y) ∈ T+,
a− + b−x+ c−y, X = (x, y) ∈ T−,

satisfying

ϕ̂i(Aj) = δij , j = 1, 2, 3,

[ϕ̂i(D)] = [ϕ̂i(E)] = 0,[
β
∂ϕ̂i

∂n

]
DE

= 0.

These are continuous, piecewise linear functions on T satisfying the flux jump condition along
DE, whose uniqueness and existence are known [15, 1]. We denote by Ŝh(T ) the space of
functions generated by ϕ̂i, i = 1, 2, 3 constructed above. Next we define the global immersed
finite element space Ŝh(Ω) to be the set of all functions ϕ ∈ L2(Ω) such that ϕ ∈ Ŝh(T ) if T ∈ T I

h , and ϕ ∈ Sh(T ) if T ̸∈ T I
h ,

having continuity at all vertices of the triangulation
and vanishes on the boundary vertices.


We note that a function in Ŝh(Ω), in general, is not continuous across an edge common to two
interface elements. Let Hh(Ω) := H1

0 (Ω) + Ŝh(Ω) and equip it with the piecewise norms
|u|1,h := |u|

H̃1(Ω)
, ∥u∥1,h := ∥u∥

H̃1(Ω)
. Next, we define the interpolation operator. For any

u ∈ H̃2
Γ(T ), we let Îhu ∈ Ŝh(T ) be such that

Îhu(Ai) = u(Ai), i = 1, 2, 3,
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where Ai, i = 1, 2, 3 are the vertices of T and we call Îhu the local interpolant of u in Ŝh(T ).
We naturally extend it to H̃2

Γ(Ω) by (Îhu)|T = Îh(u|T ) for each T . Then we have the following
approximation property [14, 2].

Proposition 2.1. There exists a constant C > 0 such that∑
T∈Th

(∥u− Îhu∥0,T + h|u− Îhu|1,T ) ≤ Ch2∥u∥
H̃2(Ω)

for all u ∈ H̃2
Γ(Ω).

Now the IFEM based on the P1- Lagrange basis functions introduced in [1, 2] reads:
(P1-IFEM) Find uh ∈ Ŝh(Ω) such that

ah(uh, vh) = (f, vh), ∀ vh ∈ Ŝh(Ω),

where

ah(u, v) =
∑
T∈Th

∫
T
β∇u · ∇v dx, ∀u, v ∈ Hh(Ω).

As it turns out later in [3], this scheme is suboptimal, see [4]. Hence we need a modified
scheme by adding consistency terms.

2.2. Modified P1-IFEM. In this section, we modify the P1-IFEM above by adding the line
integrals for jumps of fluxes and functional values. The method resembles the discontinuous
Galerkin methods (see [17, 25] and references therein) which use completely discontinuous ba-
sis functions, but the degrees of freedom in our method are much smaller than the DG methods
since this method has the same number of basis functions as the conventional P1-FEM.

In order to describe this modified method, we need some additional notations. Let the col-
lection of all the edges of T ∈ Th be denoted by Eh and we split Eh into two disjoint sets;
Eh = Eo

h ∪ Eb
h, where Eo

h is the set of edges lying in the interior of Ω, and Eb
h is the set of

edges on the boundary of Ω. In particular, we denote the set of edges cut by the interface Γ
by EI

h . For every e ∈ Eo
h, there are two element T1 and T2 sharing e as a common edge. Let

nTi , i = 1, 2 be the unit outward normal vector to the boundary of Ti, but for the edge e, we
choose a direction of the normal vector, say ne = nT1 and fix it once and for all. For functions
v defined on T1∪T2, we let [·]e and {·}e denote the jump and average across e respectively, i.e.

{v}e(x) :=
1

2
lim

δ→0+
(v(x− δne) + v(x+ δne)) ,

[v]e(x) := lim
δ→0+

(v(x− δne)− v(x+ δne)) .

We also need the mesh dependent norm ||| · ||| on the space Hh(Ω),

|||v|||2 :=
∑
T∈Th

∥v∥20,T +
∑
T∈Th

∥∇v∥20,T +
∑
e∈Eo

h

h

∥∥∥∥{ ∂v

∂ne

}
e

∥∥∥∥2
0,e

+
∑
e∈Eo

h

h−1∥[v]∥20,e.
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Multiplying both sides of the equation (2.1) by v ∈ H1(T ), applying Green’s formula and
adding terms, we get∑

T∈Th

(∫
T
β∇u · ∇vdx−

∫
∂T

β∇u · nT vds

)
=

∫
Ω
fvdx.

By using the preassigned normal vectors ne and adding the unharmful term ϵ
∫
e{β∇v·ne}e[u]eds

for any ϵ, we see the left hand side of above equation becomes∑
T∈Th

∫
T
β∇u · ∇vdx −

∑
e∈Eo

h

∫
e
{β∇u · ne}e[v]eds + ϵ

∑
e∈Eo

h

∫
e
{β∇v · ne}e[u]eds

which is valid for v ∈ L2(Ω) ∩H1(T ) for all T ∈ Th. We define the following bilinear forms

bϵ(u, v) := −
∑
e∈Eo

h

∫
e
{β∇u · n}e [v]eds,+ϵ

∑
e∈Eo

h

∫
e
{β∇v · n}e [u]eds,

jσ(u, v) :=
∑
e∈Eo

h

∫
e

σ

h
[u]e[v]eds, for some σ > 0,

aϵ(u, v) := ah(u, v) + bϵ(u, v) + jσ(u, v).

Now, for each ϵ = 0, ϵ = −1 and ϵ = 1, we define the modified P1-IFEM for the problem
(2.1)-(2.3):
(Modified P1-IFEM) Find umh ∈ Ŝh(Ω) such that

aϵ(u
m
h , vh) = (f, vh), ∀vh ∈ Ŝh(Ω). (2.5)

This is similar to a class of DG methods, corresponding to IP, SIPG, NIPG and OBB ([16, 25,
18, 26]), if ϵ = 0, ϵ = −1, ϵ = 1, and ϵ = 0, σ = 0, respectively.

The following result is given in [4, 5].
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Theorem 2.2. Let u be the solution of (2.1)-(2.3) and let uh be the solution of (2.5). Then ∃
const C0 > 0 such that

|||u− uh||| ≤ C0h∥u∥H̃2(Ω)
.

2.3. Crouzeix-Raviart P1 nonconforming finite element. We now consider a IFEM based
on Crouzeix-Raviart P1 nonconforming finite element. i.e. the degrees of freedom is the edge
averages. For this presentation we slightly change notation. The problem we consider is

−∇ · (β(x)∇p) = f in Ωs (s = +,−) (2.6)
p = 0 on ∂Ω (2.7)

with the jump conditions along the interface

[p]Γ = 0,

[
β(x)

∂p

∂n

]
Γ

= 0. (2.8)

Geometric configuration of a typical reference interface element T is given in Fig. 2 in which
the curve between points D and E is part of the interface. Let ei, i = 1, 2, 3 be the edges of T .
For ϕ ∈ H1(T ), let ϕ̄ei denote the average of ϕ along ei, i.e., ϕ̄ei :=

1
|ei|

∫
ei
ϕds.

We construct a piecewise linear function of the form

ϕ(X) =

{
ϕ+(X) = a0 + b0x+ c0y, X = (x, y) ∈ T+,
ϕ−(X) = a1 + b1x+ c1y, X = (x, y) ∈ T−, (2.9)

satisfying

ϕ̄ei = Vi, i = 1, 2, 3, (2.10)

ϕ+(D) = ϕ−(D), ϕ+(E) = ϕ−(E), β+
∂ϕ+

∂nDE

= β− ∂ϕ−

∂nDE

, (2.11)

where Vi, i = 1, 2, 3 are given values, nDE is the unit normal vector on the line segment DE,
and β+, β− are averages along DE. This is a piecewise linear function on T that satisfies the
homogeneous jump conditions along DE.

Theorem 2.3. Given a reference interface triangle, the piecewise linear function ϕ(x, y) de-
fined by (2.9)-(2.11) is uniquely determined.

Now we can construct nodal basis functions on an interface element T in general position
through affine mapping. We let N̂h(T ) to denote the three-dimensional linear space spanned
by these shape functions. We note that N̂h(T ) is a subspace of H1(T ). When no interface is
involved, we use the notation Nh(T ) for N̂h(T ). Finally, we define the immersed finite element



RECENT DEVELOPMENT OF IMMERSED FEM 73

space N̂h(Ω) as the collection of functions such that

ϕ|T ∈ Nh(T ), if T is a noninterface element,
ϕ|T ∈ N̂h(T ), if T is an interface element,∫
e
ϕ|T1 ds =

∫
e
ϕ|T2 ds, if T1, T2 are adjacent elements and e is a common edge of T1 and T2,∫

e
ϕds = 0, if e is part of the boundary ∂Ω.

2.4. Approximation property of nonconforming immersed space N̂h(T ). In this subsec-
tion, we would like to study the approximation property of N̂h(T ) by defining an interpolation
operator. The difficulty lies in the fact that N̂h(T ) does not belong to H̃2(T ), the restriction of
H̃2(Ω) on T , where H̃2(T ) = H1(T )∩H2(T ∩Ω+)∩H2(T ∩Ω−)(see Fig. 4). To overcome
the difficulty, we introduce a bigger space which contains both of these spaces.

For a given interface element T, we consider a function space X(T ) such that every p ∈
X(T ) satisfies p ∈ H1(T ) ∩H2(T+ ∩ Ω+) ∩H2(T− ∩ Ω−) ∩H2(T+

r ) ∩H2(T−
r ),∫

Γ∩T
(β− grad p− − β+ grad p+) · nΓ ds = 0,

where Tr = T − (Ω+ ∩ T+)− (Ω− ∩ T−) and T s
r = Tr ∩Ωs, s = +,−. For any p ∈ X(T ),

we define the following norms.

|p|2X(T ) = |p|22,T−∩Ω− + |p|22,T+∩Ω+ + |p|2
2,T−

r
+ |p|2

2,T+
r
,

∥p∥2X(T ) = ∥p∥21,T + |p|2X(T ),

|||p|||2,T = |p|X(T ) +

3∑
i=1

|p̄ei |,

where p̄ei , i = 1, 2, 3 are the average on each edge ei. Then we have [14]

Lemma 2.2. Let T be an interface element. Then for any p ∈ X(T ), we have

∥p− Ihp∥m,T ≤ Ch2−m∥p∥X(T ), m = 0, 1,

where h is the mesh size of T .

Now the CR based IFEM is simply : Find ph ∈ N̂h(Ω) such that

ah(ph, qh) = (f, qh), ∀ qh ∈ N̂h(Ω), (2.12)

where

ah(p, q) =
∑
T∈Th

∫
T
β∇p · ∇q dx, ∀ p, q ∈ Hh(Ω) ≡ H(Ω) + N̂h(Ω).
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Lemma 2.3 (Second Strang Lemma). If p ∈ H̃2(Ω), ph ∈ N̂h(Ω) are the solutions of (2.6)
and (2.12) respectively, then there exists a constant C > 0 such that

∥p− ph∥1,h ≤ C

{
inf

qh∈N̂h(Ω)
∥p− qh∥1,h + sup

ϕh∈N̂h(Ω)

| ah(p, ϕh)− (f, ϕh) |
∥ϕh∥1,h

}
.

A B

C

T−
T+

D

E

A B

C

T ∩ Ω−
T ∩ Ω+

D

E

Γ

(a) N̂h(T ) ⊂ H2(T+) ∩H2(T−) (b) H̃2(T ) ⊂ H2(T ∩ Ω+) ∩H2(T ∩ Ω−)

T+
r

T−
r

FIGURE 4. The real interface and the approximated interface

Using Lemma 2.2 and 2.3, we obtain

Theorem 2.4. [14] Let p be the solution of (2.6)-(2.8) and let ph be the IFEM solution. Then
there exists a positive constant C0 such that

|||p− ph||| ≤ C0h∥p∥H̃2(Ω)
.

The L2-error estimate easily follows from the duality technique.

Theorem 2.5. The solution ph satisfies

∥p− ph∥0,Ω ≤ Ch2∥p∥
H̃2(Ω)

.

2.5. Mixed finite volume method based on IFEM. In this section, we propose a new mixed
finite volume method based on the ‘broken’ P1-nonconforming finite element method intro-
duced in the previous section. Our method is similar to the mixed finite volume method studied
in [27, 28, 29], but the usual nonconforming finite element space is replaced by our ‘broken’
P1-nonconforming space.

Let us write the problem (2.6) in a mixed form by introducing the vector variable u =
−β grad p as  u+ β grad p = 0 in Ω,

divu = f in Ω,
p = 0 on ∂Ω.

(2.13)

The mixed finite element method based on this dual formulation is well-known [30, 31, 32].
In the mixed method, we need to find a direct approximation of the flow variable u. For that
purpose, we introduce V = H(div,Ω) = {v ∈ L2(Ω) : divv ∈ L2(Ω)}, and use the
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local RT0 space to approximate the flow variable which is given by Vh(T ) = {v : v =
(a+ cx, b+ cy), a, b, c ∈ R} for any triangular element T . The global space Vh is defined as

Vh = {v : v|T ∈ Vh(T ); v · n is continuous along interior edges}.

This method gives a good approximation of the flow variable. However, it leads to a saddle
point problem, that is, one obtains an indefinite matrix system when (2.13) is discretized. As
mentioned earlier, a popular way to avoid this indefinite system is to use Lagrange multipliers
[33]. Another possibility is to form a mixed finite volume method as in [27, 28, 29].

To define a mixed finite volume method for an interface problem, we use the well-known
RT0 space Vh for velocity and ‘broken’ P1-nonconforming immersed space N̂h for pressure
variable. Note that every v ∈ Vh has continuous normal components across the edges of Th,
which are constant.

We consider the following scheme: Find (uh, ph) ∈ Vh × N̂h which satisfies on each
element T ∈ Th 

∫
T
(uh + β grad ph) · gradϕ = 0, ∀ϕ ∈ N̂h(T ),∫

T
divuh =

∫
T
f.

(2.14)

Note that since divuh is constant, divuh|T = f |T := 1
|T |

∫
T f , where |T | denotes the area of

T , which implies ∫
T
divuh|Tϕ =

∫
T
f |Tϕ, ϕ ∈ N̂h(T ).

When the interface is not present, N̂h(T ) = Nh(T ) and this scheme coincides with the one
in [27, 29]. Since the numbers of unknowns and equations do not change, our scheme is a
square linear system and has a unique solution. We refer to [27] for details.

Now since uh ·n is constant on the edge and ϕ ∈ N̂h has common average values on interior
edges and vanishing boundary nodal values, we obtain∑

T∈Th

∫
T
uh · gradϕ =

∑
T∈Th

[∫
∂T

(uh · n)ϕ−
∫
T
divuhϕ

]
= −

∫
Ω
fϕ,

From (2.14), it immediately follows that∑
T∈Th

∫
T
β grad ph · gradϕ =

∫
Ω
fϕ, ∀ϕ ∈ N̂h(Ω). (2.15)

This is exactly the same as the immersed finite element method introduced in the previous
section, except that on the right-hand side f is replaced by f . The velocity uh can be computed
directly from the solution ph of (2.15) as follows. Let T be an element of Th with the edges
ei, i = 1, 2, 3 and let ϕi ∈ N̂h(T ) be the ‘broken’ P1-nonconforming basis function associated
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with the edge ei. Then the flux through the edge ei is given by

|ei|(uh · n)|ei =

∫
∂T

(uh · n)ϕi =

∫
T
div(uhϕi)

=

∫
T
(divuhϕi + uh · gradϕi),

where ϕi ∈ N̂h(T ) is a basis function on T . Then it follows by (2.14) that

|ei|(uh · n)|ei =

∫
T
fϕi −

∫
T
β grad ph · gradϕi.

Thus in order to compute the fluxes through the edges of an element T , we only need to
compute the local residual of the solution ph on each T .

The error estimate of uh would follow that of ph. In fact, we can relate the estimate
∥u− uh∥0 with ∥p− ph∥1,h. First, we show the following local formula.

Lemma 2.4. Let uh, ph be the solutions of (2.14), then

uh(x) = −β grad ph +
f

2
(x− xB), ∀x ∈ T,

where β grad ph denotes the average of β grad ph on T and xB is the center of T .

Using the above lemma, we can show

Theorem 2.6. Let uh, ph be the solutions of (2.14), then there exists a constant C > 0 such
that

∥u− uh∥L2(Ω) + ∥divu− divuh∥L2(Ω) ≤ Ch
{
∥u∥H1(Ω) + ∥p∥

H̃2(Ω)
+ ∥f∥H̃1(Ω)

}
,

provided u ∈ H1(Ω).

2.6. Numerical experiment for CR- based IFEM and Mixed IFEM.

Example 2.5. Take a circle with radius r0 = 0.5 as an interface, and choose the exact solution

p =


r3

β− in Ω−,

r3

β+
+ (

1

β− − 1

β+
)r30 in Ω+.

In this example, two cases β+/β− = 1/1000 and β+/β− = 1000 are reported in Tables 1
and 2.

Example 2.6 (Variable coefficient). We take the level set of L = x2/(0.5)2+ y2/(0.25)2−1.0
as an interface. The exact solution is chosen as p = L(x, y)/β where

β =

{
1 + 0.5(x2 − xy + y2) on Ω−,
1 on Ω+.
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1/h ∥p− ph∥0 order ∥p− ph∥1,h order ∥u− uh∥0 order ∥div(u− uh)∥0 order
8 9.576e-3 1.208e-1 2.945e-1 1.053e+0

16 2.666e-3 1.845 6.744e-2 0.841 1.702e-1 0.791 5.292e-1 0.993
32 6.488e-4 2.039 3.341e-2 1.013 8.906e-2 0.934 2.650e-1 0.998
64 1.400e-4 2.212 1.657e-2 1.012 4.290e-2 1.054 1.326e-1 0.999
128 3.716e-5 1.914 8.242e-3 1.008 2.015e-2 1.090 6.629e-2 1.000
256 8.973e-6 2.050 4.117e-3 1.001 9.865e-3 1.030 3.315e-2 1.000

Order 2.029 0.985 0.994 0.998
TABLE 1. Nonconforming immersed FEM: β− = 1, β+ = 1000

1/h ∥p− ph∥0 order ∥p− ph∥1,h order ∥u− uh∥0 order ∥div(u− uh)∥0 order
8 1.447e-2 6.575e-1 3.361e-1 1.053e+0

16 3.497e-3 2.049 3.312e-1 0.989 1.657e-1 1.020 5.292e-1 0.993
32 8.826e-4 1.986 1.661e-1 0.996 8.165e-2 1.021 2.650e-1 0.998
64 2.210e-4 1.998 8.311e-2 0.999 4.075e-2 1.003 1.326e-1 0.999
128 5.507e-5 2.005 4.157e-2 0.999 1.959e-2 1.057 6.629e-2 1.000
256 1.370e-5 2.007 2.079e-2 1.000 9.658e-3 1.020 3.315e-2 1.000

Order 2.005 0.997 1.024 0.998
TABLE 2. Nonconforming immersed FEM: β− = 1000, β+ = 1

It can be easily checked that this solution indeed satisfies the jump condition. The results are
reported in Table 3.

1/h ∥p− ph∥0 order ∥p− ph∥1,h order ∥u− uh∥0 order ∥div(u− uh)∥0 order
8 2.877e-1 4.742e+0 3.398e+0 5.499e-1

16 7.343e-2 1.970 2.386e+0 0.991 1.722e+0 0.980 3.802e-1 0.532
32 1.842e-2 1.995 1.195e+0 0.997 8.646e-1 0.994 1.908e-1 0.995
64 4.608e-3 1.999 5.981e-1 0.999 4.328e-1 0.998 8.894e-2 1.101
128 1.152e-3 2.000 2.991e-1 1.000 2.165e-1 0.999 4.409e-2 1.012
256 2.881e-4 2.000 1.495e-1 1.000 1.083e-1 1.000 2.208e-2 0.998

Order 1.993 0.997 0.994 0.928
TABLE 3. Nonconforming immersed FEM: β− = 1 + 0.5(x2 − xy + y2), β+ = 1

Example 2.7 (Sharp Edge). In this example, we consider an interface with sharp edge. With
L = −y2 + ((x − 1) tan θ)2x, the the level set has a sharp corner of angle 2θ at the point
(1, 0)(see Figure 5. The exact solution is chosen as p = L(x, y)/β where β− = 1, β+ = 1000.
We have tested two cases: θ = 10o, θ = 40o and the results are reported in Tables 4 and 5.
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1−1

x

y

Ω+ Ω− 2θ

FIGURE 5. Level set of y2 = ((x− 1) tan θ)2x

1/h ∥p− ph∥0 order ∥p− ph∥1,h order ∥u− uh∥0 order ∥div(u− uh)∥0 order
8 2.058e-2 3.164e-1 2.709.e-1 2.195e-2

16 5.349e-3 1.944 1.605e-1 0.979 1.381e-1 0.972 1.096e-2 1.001
32 1.422e-3 1.911 8.010e-2 1.003 7.263e-2 0.927 5.489e-3 0.998
64 3.564e-4 1.997 4.021e-2 0.994 4.158e-2 0.805 2.746e-3 0.999
128 8.756e-5 2.025 2.004e-2 1.005 1.938e-2 1.101 1.373e-3 1.000
256 2.164e-5 2.017 9.999e-3 1.003 9.192e-3 1.076 6.868e-4 1.000

Order 1.979 0.997 0.976 1.000
TABLE 4. Nonconforming immersed FEM -Sharp Edge, θ = 10o: β− =
1, β+ = 1000

1/h ∥p− ph∥0 order ∥p− ph∥1,h order ∥u− uh∥0 order ∥div(u− uh)∥0 order
8 1.380e-2 1.677e-1 5.366e-1 4.902e-1

16 3.753e-3 1.878 9.986e-2 0.748 2.167e-1 1.308 2.471e-1 0.988
32 8.606e-4 2.124 3.811e-2 1.390 1.060e-1 1.031 1.240e-1 0.994
64 2.192e-4 1.973 1.544e-2 1.303 5.117e-2 1.051 6.211e-2 0.998
128 5.567e-5 1.977 7.339e-3 1.073 2.451e-2 1.062 3.108e-2 0.999
256 1.359e-5 2.034 3.510e-3 1.064 1.196e-2 1.035 1.555e-2 0.999

Order 1.997 1.116 1.097 0.996
TABLE 5. Nonconforming immersed FEM -Sharp Edge, θ = 40o: β− =
1, β+ = 1000

3. ELASTICITY EQUATION

We consider the elasticity equation with traction condition. Find u = (u1, u2) such that

−∇ · (σ(u)) = f in Ωs (s = +,−) (3.1)
u = 0 on ∂Ω

[u]Γ = 0,

[σ(u) · n]Γ = 0 traction condition,
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where σ(u) = 2µsϵ(u) + λstr(ϵ(u))I , ϵ(u) = 1
2(∇u+∇uT ), are stress tensor and defor-

mation tensor, I the identity tensor.
Multiplying v ∈ (H1

0 (Ω))
2, applying Green’s identity in each domain Ωs, and summing

over s = +,− we have

a(u,v) = (f ,v),

where

a(u,v) =

∫
Ω
2µϵ(u) : ϵ(v)dx+

∫
Ω
λdivudivv dx,

the tensor inner product : is defined by

ϵ(u) : ϵ(v) =

2∑
i,j=1

ϵij(u)ϵij(v).

Difficulties with elasticity problems. Some difficulties in solving elasticity equations are

• The bilinear form a(u,v) is not coercive for certain FEM with Neumann or traction
conditions.

• When the material’s Poisson ratio approaches 1/2, the material becomes nearly incom-
pressible and the so called ”locking phenomena” occurs for low order standard nodal
based methods.

• For the P2 and P3 conforming elements, the convergence orders tend to be suboptimal
when the material is nearly incompressible.

• On the other hand, P1/Q1-nonconforming element can not be used since it fails to
satisfy Korn’s inequality [34].

Partial suggestions to overcome these difficulties are:

• Use nonconforming element of degree ≥ 2.
• The mixed methods can be applied to elasticity equations by introducing a new variable

representing the divergence of the displacement.
• Use Kouhia and Stenberg(KS) [35] element which partially relaxes the continuity along

the edges
• Use Hansbo and Larson [36] type P1 nonconforming IFEM method with a stabilizing

term (DG technique)

3.1. CR-Immersed element for the elasticity interface problem. We introduce an immersed
element for elasticity equation with interface. Let us put

ϕ̂i(X) =


ϕ̂
+

i (X) =

(
a+0 + b+0 x+ c+0 y,
a+1 + b+1 x+ c+1 y,

)
X = (x, y) ∈ T+,

ϕ̂
−
i (X) =

(
a−0 + b−0 x+ c−0 y,
a−1 + b−1 x+ c−1 y,

)
X = (x, y) ∈ T−
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We require that it satisfy

ϕ̂i|ej =

{
δij
0

, j = 1, 2, 3,

ϕ̂i|ej =

{
0
δij

, j = 1, 2, 3,

[ϕ̂i](D) = [ϕ̂i](E) = 0,
[
σ(ϕ̂i) · n

]
DE

= 0.

The above equations yiels a determining system with matrix C

0 0 0 1 ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
1 xD yD −1 −xD −yD 0 0 0 0 0 0
1 xE yE −1 −xE −yE 0 0 0 0 0 0
0 0 0 0 0 0 1 xD yD −1 −xD −yD

0 0 0 0 0 0 1 xE yE −1 −xE −yE

0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗



.

Proposition 3.1 (Uniqueness and existence of the element). The matrix C is invertible, hence
the basis functions uniquely exist.

Proof. See [6]. □

The immersed basis functions ϕ̂i, i = 1, · · · , 6 are locally obtained by the degrees of free-
dom vi = (δ1i, δ2i, δ3i, δ4i, δ5i, δ6i, 0, 0, 0, 0, 0, 0)

T . Such a (local) space is denoted by N̂(T ).
The global immersed finite element space N̂h(Ω) is the set of all functions ϕ ∈ (L2(Ω))

2 such
that

• ϕ ∈ N̂h(T ) if T is an interface element
• ϕ ∈ Nh(T ) if T is not an interface element
• ϕ vanishes on the boundary edges.

IFEM scheme for elasticity problems. Find uh ∈ N̂h(Ω) such that

ah(uh,vh) = (f ,vh), ∀vh ∈ N̂h(Ω), (3.2)
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where

ah(uh,vh) : =
∑
T∈Th

∫
T
2µϵ(uh) : ϵ(vh)dx+

∑
T∈Th

∫
T
λdivuh divvh dx

+τ
∑
e∈E

∫
e
h−1[uh][vh]ds

∥v∥2ah := ah(uh,vh).

Lemma 3.2. The form ah(·, ·) is coercive.

Proof. Need the following Korn type inequality [37]. With Q(vh) := vh − 1
|T |

∫
T vh dx

|vh|21,h ≤ C
∑
T∈Th

(∥ϵ(vh)∥20,T + ∥Q(vh)∥20,T ) +
∑
e∈E

∫
e

τ

h
[vh]

2ds, vh ∈ N̂(T ),

∥Q(vh)∥20,T ≤ C(T )h|vh|21,T .
Hence we have

|vh|21,h ≤ C
∑
T∈Th

(
∥ϵ(vh)∥20,T +

∫
T
λ|divvh|2dx

)
+

∑
e∈E

∫
e

τ

h
[vh]

2ds for all vh ∈ N̂(T )

holds for all vh ∈ N̂(T ) and for sufficiently small h. □
3.2. Approximation Properties. Define spaces X(T ) and XΓ(T ):

X(T ) :=
{
u : u ∈ (H1(T ))2,u ∈ (H2(S))2 for all S = T±

r , T± ∩ Ω±}
XΓ(T ) :=

{
u : u ∈ X(T ),

∫
Γ∩T

(σ(u)− − σ(u)+) · nΓ ds = 0

}
Note the relations

(H̃2(T ))2 ↪→ X(T ) ↪→ (H1(T ))2

(H̃2
Γ(T ))

2 ∪ N̂h(T ) ↪→ XΓ(T ) ↪→ X(T ) ↪→ (H1(T ))2

We introduce some norms.

∥u∥2b,m,T = ∥u∥2m,T +m · ∥
√
λdivu∥20,T , m = 0, 1

|u|2X(T ) = |u|22,T−∩Ω− + |u|22,T+∩Ω+ + |u|2
2,T−

r
+ |u|2

2,T+
r
,

∥u∥2X(T ) = ∥u∥21,T + |u|2X(T ) + ∥
√
λdivu∥20,T +

∑
s=+,−

|
√
λdivu|21,T s

|||u|||22,T = |u|2X(T ) +
∑

s=+,−
|
√
λdivu|21,T s

+

∣∣∣∣∫
Γ∩T

[σ(u) · nΓ] ds

∣∣∣∣2 + 3∑
i=1

|u1|ei |2 +
3∑

i=1

|u2|ei |2,
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Lemma 3.3. ||| · |||2,T is a norm on the space XΓ(T ) which is equivalent to ∥ · ∥X(T ).

For any u ∈ (H1(T ))2, we define Ihu ∈ N̂h(T ) by∫
ei

Ihu ds =

∫
ei

u ds, i = 1, 2, 3.

Now we are ready to prove the interpolation error estimate [6].

Theorem 3.1. For any u ∈ (H̃2
Γ(Ω))

2, there exists a constant C > 0 such that for m = 0, 1

∥u− Ihu∥m,h +m · ∥
√
λdiv(u− Ihu)∥L2(Ω) ≤ Ch2−m(∥u∥

H̃2(Ω)
+m ·

√
λM∥divu∥

H̃1(Ω)
),

∥u− Ihu∥m,h ≤ Ch2−m∥u∥
H̃2(Ω)

.

Proof. Let Ť be a reference interface element, Γ̌ be the corresponding local reference interface,
and ǔ(x̌) := u◦F(x̌), where F : Ť → T denote the affine mapping to define the finite element
in the real domain. Then for any ǔ ∈ (H̃2

Γ(Ť ))
2 ⊂ XΓ(Ť ), (let us denote ǔ = (ǔ1, ǔ2) and

Ihǔ = (w̌1, w̌2))

|||ǔ− Ihǔ|||22,Ť = |ǔ− Ihǔ|2X(Ť )
+

∑
s=+,−

|
√
λdiv(ǔ− Ihǔ)|21,Ť s

+

∣∣∣∣∫
Γ̌∩Ť

[(σ(ǔ)− σ(Ihǔ)) · nΓ] ds

∣∣∣∣2 + 3∑
i=1

|(ǔ1 − w̌1)|ei |2 +
3∑

i=1

|(ǔ2 − w̌2)|ei |2

= |ǔ− Ihǔ|2X(Ť )
+

∑
s=+,−

|
√
λdiv(ǔ− Ihǔ)|21,Ť s = |ǔ|2

X(Ť )
+

∑
s=+,−

|
√
λdiv ǔ|2

1,Ť s .

Let m = 0 or 1. By Lemma 3.3 and scaling argument,

∥u− Ihu∥b,m,T ≤ Ch1−m∥ǔ− Ihǔ∥b,m,Ť

≤ Ch1−m∥ǔ− Ihǔ∥X(Ť )

≤ Ch1−m|||ǔ− Ihǔ|||2,Ť
= Ch1−m(|ǔ|X(Ť ) +m ·

∑
s=+,−

|
√
λdiv ǔ|1,Ť s)

≤ Ch2−m(|u|X(T ) +m ·
∑

s=+,−
|
√
λdivu|1,T s)

≤ Ch2−m(∥u∥
H̃2(T )

+m ·
∑

s=+,−
|
√
λdivu|1,T s).

For the second assertion one can proceed exactly the same way without the terms involving
divu in the definition of norms ∥·∥b,m,T , ∥·∥X(T ) and |||·|||2,T to obtain the desired estimate. □
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3.3. Consistency error estimate. The scheme is not consistent in sense that

ah(u,vh)− ah(uh,vh) =
∑
T∈Th

∫
∂T

σ(u)n · vhds.

Hence we need to estimate the following term∑
T∈Th

∫
∂T

σ(u)n · vhds.

We have ∑
T∈Th

∫
∂T

σ(u)n · vhds =
∑
T∈Th

∑
e⊂∂T

∫
e
σ(u)n · [vh]ds

=
∑
e∈E

∫
e
(σ(u) · n− σ(u) · n) · [vh]ds

≤
∑
T∈Th

Ch∥σ(u)∥1,T |vh|1,T

=
∑
T∈Th

Ch∥2µϵ(u) + λdivu · δ∥1,T |vh|1,T

≤
∑
T∈Th

Ch(∥2µϵ(u)∥1,T + ∥λdivu∥1,T )|vh|1,T

≤
∑
T∈Th

Ch(2µ∥u∥2,T + λ∥divu∥1,T )∥vh∥a,h,

under the assumption that σ(u) ∈ H1(T ).

3.4. Consistent Scheme. A drawback of the previous scheme might be a high regularity as-
sumption that σ(u) ∈ H1(T ). To avoid such a regularity assumption, we may consider a
consistent scheme as follows.

ach(uh,vh) :=
∑
T∈Th

(∫
T
2µϵ(u) : ϵ(v)dx+

∫
T
λdivudivv dx

)
+
∑
e∈E

∫
e

τ

h
[u][v]ds

−
∑
e∈E

∫
e
{σ(u) · n} · [v]ds− ϵ

∑
e∈E

∫
e
{σ(v) · n} · [u]ds, ∀u,v ∈ Hh(Ω). (3.3)

Define

∥v∥2ach :=
∑
T∈Th

∥v∥2a,T +
∑
e∈E

(∫
e
h|{σ(v) · n}|2ds+

∫
e

τ

h
[v]2ds

)
,

∥v∥2a,T :=

∫
T
2µϵ(v) : ϵ(v)dx+

∫
T
λ|divv|2dx.

Then we have
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Lemma 3.4. There exist positive constants C0 and C1 such that the following inequalities hold.

ach(u,v) ≤ C0∥u∥ach∥v∥ach , ∀u,v ∈ Hh(Ω),

C1∥vh∥2ach ≤ ach(vh,vh), ∀vh ∈ N̂h(Ω).

3.5. Main results. For both inconsistent and consistent scheme, we have

Theorem 3.5. Let u (resp. uh) be the solution of (3.1)(reps. (3.2) or (3.3)). Then we have

∥u− uh∥ah ≤ Ch(∥u∥
H̃2(Ω)

+ λM∥divu∥
H̃1(Ω)

).

3.6. Numerical results for elasticity problem.

Example 3.6. Let the exact solution be u =
(

1
µ

(
x2 + y2 − r20

)
x, 1

µ

(
x2 + y2 − r20

)
y
)

and

the interface be given by x2 + y2 − r20 = 0.

1/h ∥u− uh∥0 order ∥divu− divuh∥0 order ∥u− uh∥1,h order
8 2.910e-3 7.972e-2 8.598e-2

16 7.450e-4 1.966 3.822e-2 1.061 4.155e-2 1.049
32 1.841e-4 2.017 1.942e-2 0.977 2.091e-2 0.991
64 4.606e-5 1.999 9.787e-3 0.989 1.049e-2 0.996
128 1.143e-5 2.010 4.920e-3 0.992 5.255e-3 0.997
256 2.851e-6 2.004 2.466e-3 0.997 2.630e-3 0.999

TABLE 6. µ− = 1, µ+ = 10, λ = 5µ, r0 = 0.48 (Example 3.6).
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FIGURE 6. Left figure shows the vector fields and right figure shows the x-
component. µ− = 1, µ+ = 10, λ = 5µ, r0 = 0.48 (Example 3.6).

Example 3.7. The exact solution is u =
(

1
µ

(
x2

4 + y2 − r20

)
x, 1

µ

(
x2

4 + y2 − r20

)
y
)

with

interface x2

4 + y2 − r20 = 0.
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FIGURE 7. Left figure shows the vector fields and right figure shows the x-
component. µ− = 1, µ+ = 10, λ = 1000µ, ν = 0.4995, r0 = 0.6 (Example
3.7).
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FIGURE 8. Left figure shows the vector fields and right figure shows the x-
component. µ− = 1, µ+ = 10, λ = 5µ, r0 = 0.4, (Example 3.7).
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FIGURE 9. Left figure shows the vector fields and right figure shows the x-
component. µ− = 1, µ+ = 100, λ = 5µ, r0 = 0.3, (Example 3.7).
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1/h ∥u− uh∥0 order ∥divu− divuh∥0 order ∥u− uh∥1,h order
8 7.655e-2 1.125e-1 1.628e-0

16 2.372e-2 1.690 5.570e-2 1.014 9.065e-1 0.846
32 6.806e-2 1.801 2.829e-2 0.978 4.518e-1 1.004
64 1.847e-3 1.882 1.417e-2 0.997 2.247e-1 1.008
128 4.811e-4 1.941 7.110e-3 0.995 1.111e-1 1.016
256 1.230e-4 1.968 3.563e-3 0.997 5.534e-2 1.006

TABLE 7. µ− = 1, µ+ = 10, λ = 1000µ, ν = 0.4995, r0 = 0.6 (Example
3.7 - nearly incompressible case).

1/h ∥u− uh∥0 order ∥divu− divuh∥0 order ∥u− uh∥1,h order
8 2.477e-3 5.920e-2 6.744e-2

16 6.689e-4 1.888 2.909e-2 1.025 3.340e-2 1.014
32 1.704e-4 1.973 1.480e-2 0.975 1.694e-2 0.979
64 4.200e-5 2.020 7.485e-3 0.983 8.531e-3 0.990
128 1.029e-5 2.029 3.765e-3 0.992 4.281e-3 0.995
256 2.579e-6 1.996 1.886e-3 0.997 2.144e-3 0.998

TABLE 8. µ− = 1, µ+ = 10, λ = 5µ, r0 = 0.4, (Example 3.7).

1/h ∥u− uh∥0 order ∥divu− divuh∥0 order ∥u− uh∥1,h order
8 2.018e-3 3.164e-2 3.788e-2

16 6.644e-4 1.647 1.424e-2 1.151 2.066e-2 0.875
32 1.376e-4 2.227 7.314e-3 0.962 9.592e-3 1.107
64 2.736e-5 2.330 3.735e-3 0.969 4.458e-3 1.105
128 6.896e-6 1.988 1.880e-3 0.991 2.229e-3 1.000
256 1.726e-6 1.998 9.434e-4 0.994 1.107e-3 1.010

TABLE 9. µ− = 1, µ+ = 100, λ = 5µ, r0 = 0.3, (Example 3.7).

4. MULTIGRID ALGORITHMS

The IFEM may not be meaningful without the applicability of multigrid algorithms. Multi-
grid algorithms were first introduced in [38], and have been known to be very efficient for
many class of FEM discretization [39, 40] and their convergence behaviors were discussed in
[41, 39, 40, 42, 43, 44, 45] and references therein. Multigrid algorithms for IFEM were first
introduced in [46] and analyzed in [47]. We describe them in this section.

4.1. Multigrid algorithms for Lagrangian based IFEM spaces. For simplicity,we describe
multigrid algorithms for Lagrangian based IFEM space only. The multigrid algorithms for
Crouzeix-Raviart nonconforming element based IFEM can be described similarly.
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Let Thk
, k = 0, ..., J be hierarchical triangulations of Ω with mesh size hk = 2−kh0, where

h0 is the meshsize of the coarsest grid. For simplicity, we replace the subscript hk simply by
the subscript k. For example,

Tk = Thk
, ak(·, ·) = ahk

(·, ·), Ŝk(Ω) = Ŝhk
(Ω).

We let Ak be the matrix arising from the linear system obtained from (2.5).
Since the IFEM spaces are not nested, i.e.,

Ŝ1 ⊈ Ŝ2 ⊈ · · · ⊈ ŜJ ,

it is important to construct an efficient prolongation operator. We define a prolongation operator
Îk : Ŝk−1(Ω) → Ŝk(Ω) so that the prolongated functions satisfy the local flux condition on the
fine space.

On a non-interface element, Îk is defined as the same as usual prolongation operator for
node based FEM. Now to define Îk on interface elements, suppose that T1 = △X1X2X3

and T2 = △X1X4X3 are tow adjacent interface elements in Tk−1 (See Figure 10). Given
a function v ∈ Ŝk−1(Ω) it suffices to define node values of Îk(v) at X1, X2, ..., X9. Firstly,
Îk(v)(X) is defined by v(X) where X are nodes on coarse triangle, i.e., X = X1, X2, X3, X4.
Now consider the mid points of vertices X5, X6, . . . , X9 as in Figure 10. However, we will
describe Îk(v)(X) for the mid points X of vertices. We consider X5. We define Îkv(X5) is
defined as the average values:

Îkv(X5) =
1

2

(
v−1 (X5) + v−2 (X5)

)
,

where v−1 = v1|T−
1

and v−2 = v2|T−
2

. The values of Îkv(X) at X = X6, X7, X8, X9 are
defined similarly.

X1

X2 X3

X4

X5

X7

X6X8

X9

Γ

FIGURE 10. △X1X2X3 abd △X1X4X3 are interface triangles in Tk−1 and
sub triangles are elements in Tk. The blue curve represents the interface Γ.
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We summarize the description of prolongation operator. If v ∈ Ŝk−1(Ω), then Îkv ∈ Ŝk(Ω)
is defined by

Îkv(X) =


v(X) if X if is node of Tk−1,

1
2 (v|T1(X) + v|T2(X)) if X is a midpoint of an edge e shared

by two triangles T1, T2 ∈ Tk−1.

Next, we define the restriction operator P 0
k−1 as the adjoint operators of Îk with respect to

(·, ·)k, i.e., P 0
k−1 to satisfy: for u ∈ Ŝk−1(Ω) and ϕ ∈ Ŝk(Ω),

(P 0
k−1u, ϕ)k−1 = (u, Îkϕ)k.

Here, (·, ·)k is defined by

(uk, vk)k =
∑
T∈Tk

∫
T
ukvk.

Lastly, we define smoothing operator Rk which can be Gauss-Seidel or Jacobi or any other
smoothing operators. To define symmetric multigrid algorithm, we define adjoint smoothing
operator Rt

k.
Now we are ready to describe multigrid operator Bk : Ŝk(Ω) → Ŝk(Ω) recursively for

k = 1, 2, . . . , J .
Algorithm Bk.

Set B0g0 = A−1
0 g0. Suppose Bk−1 is defined.

We define Bkgk as follows.
1. Set x0 = 0 and q0 = 0
2. Define xi for i = 1, ...,m(k) by

xi = xi−1 +Rk(gk −Akx
i−1)

3. Define ym(k) by ym(k) = xm(k) + Îkq
p where qj for j = 1, ..., p is defined by

qj = qj−1 +Bk−1[P
0
k−1(gk −Akx

m)−Ak−1q
j−1]

4. Define yi for i = m(k) + 1, ..., 2m(k) by

yi = yi−1 +Rt
k(gk −Aky

i−1)

5. Set Bkgk = y2m(k).
We note that the Bk is a symmetric operator. The algorithm is similar to conventional multi-

grid methods for FEM, but we have used the modified prolongation operator which plays an
important role in the convergence of the algorithm. When p = 1, the algorithm is corresponds
to V-cycle and the case of p = 2 corresponds to W-cycle.
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4.2. Convergence analysis of MG. We remark that the discretized spaces at level k, k =
1, · · · , J are not nested. The general frameworks for the convergence analysis of the multigrid
algorithms on the non-nested spaces are given by Bramble et al. in [44]. We need some
assumptions. Here, λk is the largest eigenvalue of Ak.

(A.1) Smoothing property. There exists a constant CR > 0 such that for all u ∈ Ŝk(Ω),

∥u∥2k
λk

≤ CR(R̃ku, u)k,

where R̃k = (I −K∗
kKk)A

−1
k , Kk = I −RkAk and K∗

k = I −Rt
kAk.

(A.2) There exists a constant C∗, such that

Ak(Îku, Îku) ≤ C∗Ak−1(u, u), ∀u ∈ Ŝk−1(Ω).

(A.3) Regularity and approximation For some 0 < α ≤ 1, there exists a constant Cα > 0
such that

|ak((I − ÎkPk−1)u, u)| ≤ Cα

(
∥Aku∥2k

λk

)α

ak(u, u)
1−α.

for all u ∈ Ŝk(Ω).
The following theorem is given in [44].

Theorem 4.1. Suppose p = 2 and m(k) = m for all k in the algorithm. Assume (A.1), (A.2)
and (A.3) hold. If ”m is sufficiently large”, then we have

|ak((I −BkAk)u, u)| ≤ δak(u, u) ∀u ∈ Ŝk(Ω),

where

δ =
M

M +mα

for some positive constant M > 0.

Let us examine the assumptions (A.1). By the definition of the bilinear form in (2.5), Ak is
symmetric and positive definite. Moreover, Ak is sparse since the basis function in Ŝk(Ω) has
support in less than 6 elements. Thus, the standard operators such as Gasuss-Seidel or Jacobi
satisfy (A.1) (see [48]).

The assumptions (A.2)-(A.3) are proved in [47], rigorously, which together with (A.1) lead
to the conclusion that the W-cycles are contracting.

4.3. Numerical results.

Example 4.1. The interface is given by Γ = {(x, y) : y − 3x(x− 0.3)(x− 0.8)− 0.38 = 0}
and the coefficient is β− = 1, β+ = 1000. The exact solution u(x, y) is

u(x, y) =

 (y − 3x(x− 0.3)(x− 0.8)− 0.38)/β− if (x, y) ∈ Ω−,

(y − 3x(x− 0.3)(x− 0.8)− 0.38)/β+ if (x, y) ∈ Ω+.



90 G. JO AND D. Y. KWAK

We use V-cycle (p = 1) with only one pre and post smoothing for the multigrid solver. We
report the number of iterations and convergence rates in Table 10. We observe the number of
iterations are bounded for all levels.

We compare the CPU time of the V-cycle with the CG and the diagonally preconditioned
CG (D-PCG) in Table 11. The CPU time of V-cycle grows like O(N) while the CPU times of
CG and D-PCG grows like O(N3/2), where N is the number of the unknowns.

V(1, 1)-cycle
1/hJ Iter. ratio

32 38 0.693
64 39 0.701
128 27 0.598
256 25 0.575

TABLE 10. The number of iterations and convergence rates of V(1, 1)-cycle
for ŜJ(Ω) for Example 4.1.

1/hJ V(1, 1)-cycle CG D-PCG
32 0.748 4.977 0.296
64 1.763 58.874 2.247

128 3.370 455.399 17.581
256 10.857 3628.578 132.616

TABLE 11. CPU time of various solvers for ŜJ(Ω) for Example 4.1.
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