• 제목/요약/키워드: Tracking-by-Detection

검색결과 803건 처리시간 0.024초

Classification between Intentional and Natural Blinks in Infrared Vision Based Eye Tracking System

  • Kim, Song-Yi;Noh, Sue-Jin;Kim, Jin-Man;Whang, Min-Cheol;Lee, Eui-Chul
    • 대한인간공학회지
    • /
    • 제31권4호
    • /
    • pp.601-607
    • /
    • 2012
  • Objective: The aim of this study is to classify between intentional and natural blinks in vision based eye tracking system. Through implementing the classification method, we expect that the great eye tracking method will be designed which will perform well both navigation and selection interactions. Background: Currently, eye tracking is widely used in order to increase immersion and interest of user by supporting natural user interface. Even though conventional eye tracking system is well focused on navigation interaction by tracking pupil movement, there is no breakthrough selection interaction method. Method: To determine classification threshold between intentional and natural blinks, we performed experiment by capturing eye images including intentional and natural blinks from 12 subjects. By analyzing successive eye images, two features such as eye closed duration and pupil size variation after eye open were collected. Then, the classification threshold was determined by performing SVM(Support Vector Machine) training. Results: Experimental results showed that the average detection accuracy of intentional blinks was 97.4% in wearable eye tracking system environments. Also, the detecting accuracy in non-wearable camera environment was 92.9% on the basis of the above used SVM classifier. Conclusion: By combining two features using SVM, we could implement the accurate selection interaction method in vision based eye tracking system. Application: The results of this research might help to improve efficiency and usability of vision based eye tracking method by supporting reliable selection interaction scheme.

Real time tracking of multiple humans for mobile robot application

  • Park, Joon-Hyuk;Park, Byung-Soo;Lee, Seok;Park, Sung-Kee;Kim, Munsang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.100.3-100
    • /
    • 2002
  • This paper presents the method for detection and tracking of multiple humans robustly in mobile platform. The perception of human is performed in real time through the processing of images acquired from a moving stereo vision system. We performed multi-cue integration such as human shape, skin color and depth information to detect and track each human in moving background scene. Human shape is measured by edge-based template matching on distance transformed image. Improving robustness for human detection, we apply the human face skin color in HSV color space. And we could increase the accuracy and the robustness in both detection and tracking by applying random sampling stochastic estimati...

  • PDF

인터넷상의 동영상에서의 물체 특징 점 탐지 및 추적 (Feature Point Detection and Tracking of Object in Motion Image on Internet)

  • 임인선
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권1호
    • /
    • pp.149-156
    • /
    • 2005
  • 전파를 이용한 통신이 활성화 되어 인터넷상의 네트워크에 연결하여 다양한 서비스가 제공되고 있는 현실에서 통신 서비스의 질을 높이기 위한 물체의 특징 점 탐지 및 추적의 중요성이 크게 대두되었다. 본 논문은 전파가 미치지 않는 음영 공간의 탐지와 추적을 위한 연구의 내용으로, Snakes 알고리즘을 이용하여 음영 공간을 탐지하고, 탐지된 음영 공간 내에서 어느 한 출발 지점에서 목표 지점까지의 경로를 추적하는 시스템의 기반을 제시하고자 하였다.

  • PDF

Noise Mitigation for Target Tracking in Wireless Acoustic Sensor Networks

  • Kim An, Youngwon;Yoo, Seong-Moo;An, Changhyuk;Wells, Earl
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권5호
    • /
    • pp.1166-1179
    • /
    • 2013
  • In wireless sensor network (WSN) environments, environmental noises are generated by, for example, small passing animals, crickets chirping or foliage blowing and will interfere target detection if the noises are higher than the sensor threshold value. For accurate tracking by acoustic WSNs, these environmental noises should be filtered out before initiating track. This paper presents the effect of environmental noises on target tracking and proposes a new algorithm for the noise mitigation in acoustic WSNs. We find that our noise mitigation algorithm works well even for targets with sensing range shorter than the sensor separation as well as with longer sensing ranges. It is also found that noise duration at each sensor affects the performance of the algorithm. A detection algorithm is also presented to account for the Doppler effect which is an important consideration for tracking higher-speed ground targets. For tracking, we use the weighted sensor position centroid to represent the target position measurement and use the Kalman filter (KF) for tracking.

Real-Time Eye Tracking Using IR Stereo Camera for Indoor and Outdoor Environments

  • Lim, Sungsoo;Lee, Daeho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권8호
    • /
    • pp.3965-3983
    • /
    • 2017
  • We propose a novel eye tracking method that can estimate 3D world coordinates using an infrared (IR) stereo camera for indoor and outdoor environments. This method first detects dark evidences such as eyes, eyebrows and mouths by fast multi-level thresholding. Among these evidences, eye pair evidences are detected by evidential reasoning and geometrical rules. For robust accuracy, two classifiers based on multiple layer perceptron (MLP) using gradient local binary patterns (GLBPs) verify whether the detected evidences are real eye pairs or not. Finally, the 3D world coordinates of detected eyes are calculated by region-based stereo matching. Compared with other eye detection methods, the proposed method can detect the eyes of people wearing sunglasses due to the use of the IR spectrum. Especially, when people are in dark environments such as driving at nighttime, driving in an indoor carpark, or passing through a tunnel, human eyes can be robustly detected because we use active IR illuminators. In the experimental results, it is shown that the proposed method can detect eye pairs with high performance in real-time under variable illumination conditions. Therefore, the proposed method can contribute to human-computer interactions (HCIs) and intelligent transportation systems (ITSs) applications such as gaze tracking, windshield head-up display and drowsiness detection.

다중 이미지에서 단일 이미지 검출 및 추적 시스템 구현 (Implementation of a Single Image Detection and Tracking System in Multiple Images)

  • 최재학;박인호;김성윤;이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제16권3호
    • /
    • pp.78-81
    • /
    • 2017
  • Augmented Reality(AR) is the core technology of the future knowledge service industry. It is expected to be used in various fields such as medical, education, entertainment etc. Briefly, augmented reality technology is a technique in which a mapped virtual object is augmented when a real-world object is viewed through a device after mapping a real-world object and a virtual object. In this paper, we implemented object detection and tracking system, which is a key technology of augmented reality. To speed up the object tracking, the ORB algorithm, which is a lightweight algorithm compared to the detection algorithm, is applied. In addition, KNN classifier, which is a machine learning algorithm, was applied to detect a single object by learning multiple images.

  • PDF

드론 영상을 이용한 딥러닝 기반 회전 교차로 교통 분석 시스템 (Deep Learning-Based Roundabout Traffic Analysis System Using Unmanned Aerial Vehicle Videos)

  • 이장훈;황윤호;권희정;최지원;이종택
    • 대한임베디드공학회논문지
    • /
    • 제18권3호
    • /
    • pp.125-132
    • /
    • 2023
  • Roundabouts have strengths in traffic flow and safety but can present difficulties for inexperienced drivers. Demand to acquire and analyze drone images has increased to enhance a traffic environment allowing drivers to deal with roundabouts easily. In this paper, we propose a roundabout traffic analysis system that detects, tracks, and analyzes vehicles using a deep learning-based object detection model (YOLOv7) in drone images. About 3600 images for object detection model learning and testing were extracted and labeled from 1 hour of drone video. Through training diverse conditions and evaluating the performance of object detection models, we achieved an average precision (AP) of up to 97.2%. In addition, we utilized SORT (Simple Online and Realtime Tracking) and OC-SORT (Observation-Centric SORT), a real-time object tracking algorithm, which resulted in an average MOTA (Multiple Object Tracking Accuracy) of up to 89.2%. By implementing a method for measuring roundabout entry speed, we achieved an accuracy of 94.5%.

Non-parametric Density Estimation with Application to Face Tracking on Mobile Robot

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.49.1-49
    • /
    • 2001
  • The skin color model is a very important concept in face detection, face recognition and face tracking. Usually, this model is obtained by estimating a probability density function of skin color distribution. In many cases, it is assumed that the underlying density function follows a Gaussian distribution. In this paper, a new method for non-parametric estimation of the probability density function, by using feed-forward neural network, is used to estimate the underlying skin color model. By using this method, the resulting skin color model is better than the Gaussian estimation and substantially approaches the real distribution. Applications to face detection and face ...

  • PDF

이동물체들의 Optical flow와 EMD 알고리즘을 이용한 식별과 Kalman 필터를 이용한 추적 (Detection using Optical Flow and EMD Algorithm and Tracking using Kalman Filter of Moving Objects)

  • 이정식;주영훈
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1047-1055
    • /
    • 2015
  • We proposes a method for improving the identification and tracking of the moving objects in intelligent video surveillance system. The proposed method consists of 3 parts: object detection, object recognition, and object tracking. First of all, we use a GMM(Gaussian Mixture Model) to eliminate the background, and extract the moving object. Next, we propose a labeling technique forrecognition of the moving object. and the method for identifying the recognized object by using the optical flow and EMD algorithm. Lastly, we proposes method to track the location of the identified moving object regions by using location information of moving objects and Kalman filter. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

오인식률 감소를 위한 이동 물체 검출 및 추적 기법 (Moving Object Detection and Tracking Techniques for Error Reduction)

  • 황승준;고하윤;백중환
    • 한국항행학회논문지
    • /
    • 제22권1호
    • /
    • pp.20-26
    • /
    • 2018
  • 본 논문에서는 오인식률 감소를 위한 다중 프레임 특징점 추적 정보 기반 이동 물체 검출 및 추적 알고리즘을 제안한다. 기존의 연구에서는 이동 물체 탐지의 오인식과 추적의 속도 문제가 존재 하였다. 본 연구에서는 이를 보완하기 위해 먼저, 카메라 이동 보상과 물체의 추적을 위해 다중 프레임의 코너 특징점과 옵티컬 플로우를 계산한다. 다음으로 다중 프레임 전-후방향 추적으로 옵티컬 플로우의 추적 오류를 감소시키고, 카메라 이동 보상을 위해 호모그래피와 RANSAC 알고리즘 기반으로 추적된 코너 특징점을 배경영역과 이동 물체 후보 영역으로 구분한다. 변환된 코너 특징점들 중 RANSAC에 의해 제거되는 이상점들을 군집화하고 일정 크기 이상의 이상점 군집 영역을 이동 물체 후보군으로 구분한다. 이동 물체 후보군으로 구분된 물체는 라벨 추적 기반 데이터 상관 분석에 따라 라벨 번호를 할당하고 추적한다. 이동 물체 후보군으로 구분된 물체는 라벨 추적 기반 데이터 상관 분석에 따라 라벨 번호를 할당하고 추적한다. 본 논문에서는 제안한 알고리즘이 기존 알고리즘에 비해 Precision과 Recall 모두 향상됨을 쿼드로터 영상기반 탐지 및 추적 성능 실험으로 확인하였다.