• 제목/요약/키워드: Tracking-Learning-Detection

검색결과 150건 처리시간 0.043초

Development of Low-Cost Vision-based Eye Tracking Algorithm for Information Augmented Interactive System

  • Park, Seo-Jeon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • 제7권1호
    • /
    • pp.11-16
    • /
    • 2020
  • Deep Learning has become the most important technology in the field of artificial intelligence machine learning, with its high performance overwhelming existing methods in various applications. In this paper, an interactive window service based on object recognition technology is proposed. The main goal is to implement an object recognition technology using this deep learning technology to remove the existing eye tracking technology, which requires users to wear eye tracking devices themselves, and to implement an eye tracking technology that uses only usual cameras to track users' eye. We design an interactive system based on efficient eye detection and pupil tracking method that can verify the user's eye movement. To estimate the view-direction of user's eye, we initialize to make the reference (origin) coordinate. Then the view direction is estimated from the extracted eye pupils from the origin coordinate. Also, we propose a blink detection technique based on the eye apply ratio (EAR). With the extracted view direction and eye action, we provide some augmented information of interest without the existing complex and expensive eye-tracking systems with various service topics and situations. For verification, the user guiding service is implemented as a proto-type model with the school map to inform the location information of the desired location or building.

LSTM Network with Tracking Association for Multi-Object Tracking

  • Farhodov, Xurshedjon;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제23권10호
    • /
    • pp.1236-1249
    • /
    • 2020
  • In a most recent object tracking research work, applying Convolutional Neural Network and Recurrent Neural Network-based strategies become relevant for resolving the noticeable challenges in it, like, occlusion, motion, object, and camera viewpoint variations, changing several targets, lighting variations. In this paper, the LSTM Network-based Tracking association method has proposed where the technique capable of real-time multi-object tracking by creating one of the useful LSTM networks that associated with tracking, which supports the long term tracking along with solving challenges. The LSTM network is a different neural network defined in Keras as a sequence of layers, where the Sequential classes would be a container for these layers. This purposing network structure builds with the integration of tracking association on Keras neural-network library. The tracking process has been associated with the LSTM Network feature learning output and obtained outstanding real-time detection and tracking performance. In this work, the main focus was learning trackable objects locations, appearance, and motion details, then predicting the feature location of objects on boxes according to their initial position. The performance of the joint object tracking system has shown that the LSTM network is more powerful and capable of working on a real-time multi-object tracking process.

비행로봇의 항공 영상 온라인 학습을 통한 지상로봇 검출 및 추적 (UGR Detection and Tracking in Aerial Images from UFR for Remote Control)

  • 김승훈;정일균
    • 로봇학회논문지
    • /
    • 제10권2호
    • /
    • pp.104-111
    • /
    • 2015
  • In this paper, we proposed visual information to provide a highly maneuverable system for a tele-operator. The visual information image is bird's eye view from UFR(Unmanned Flying Robot) shows around UGR(Unmanned Ground Robot). We need UGV detection and tracking method for UFR following UGR always. The proposed system uses TLD(Tracking Learning Detection) method to rapidly and robustly estimate the motion of the new detected UGR between consecutive frames. The TLD system trains an on-line UGR detector for the tracked UGR. The proposed system uses the extended Kalman filter in order to enhance the performance of the tracker. As a result, we provided the tele-operator with the visual information for convenient control.

드론 영상을 이용한 딥러닝 기반 회전 교차로 교통 분석 시스템 (Deep Learning-Based Roundabout Traffic Analysis System Using Unmanned Aerial Vehicle Videos)

  • 이장훈;황윤호;권희정;최지원;이종택
    • 대한임베디드공학회논문지
    • /
    • 제18권3호
    • /
    • pp.125-132
    • /
    • 2023
  • Roundabouts have strengths in traffic flow and safety but can present difficulties for inexperienced drivers. Demand to acquire and analyze drone images has increased to enhance a traffic environment allowing drivers to deal with roundabouts easily. In this paper, we propose a roundabout traffic analysis system that detects, tracks, and analyzes vehicles using a deep learning-based object detection model (YOLOv7) in drone images. About 3600 images for object detection model learning and testing were extracted and labeled from 1 hour of drone video. Through training diverse conditions and evaluating the performance of object detection models, we achieved an average precision (AP) of up to 97.2%. In addition, we utilized SORT (Simple Online and Realtime Tracking) and OC-SORT (Observation-Centric SORT), a real-time object tracking algorithm, which resulted in an average MOTA (Multiple Object Tracking Accuracy) of up to 89.2%. By implementing a method for measuring roundabout entry speed, we achieved an accuracy of 94.5%.

Deep Learning Object Detection to Clearly Differentiate Between Pedestrians and Motorcycles in Tunnel Environment Using YOLOv3 and Kernelized Correlation Filters

  • Mun, Sungchul;Nguyen, Manh Dung;Kweon, Seokkyu;Bae, Young Hoon
    • 방송공학회논문지
    • /
    • 제24권7호
    • /
    • pp.1266-1275
    • /
    • 2019
  • With increasing criminal rates and number of CCTVs, much attention has been paid to intelligent surveillance system on the horizon. Object detection and tracking algorithms have been developed to reduce false alarms and accurately help security agents immediately response to undesirable changes in video clips such as crimes and accidents. Many studies have proposed a variety of algorithms to improve accuracy of detecting and tracking objects outside tunnels. The proposed methods might not work well in a tunnel because of low illuminance significantly susceptible to tail and warning lights of driving vehicles. The detection performance has rarely been tested against the tunnel environment. This study investigated a feasibility of object detection and tracking in an actual tunnel environment by utilizing YOLOv3 and Kernelized Correlation Filter. We tested 40 actual video clips to differentiate pedestrians and motorcycles to evaluate the performance of our algorithm. The experimental results showed significant difference in detection between pedestrians and motorcycles without false positive rates. Our findings are expected to provide a stepping stone of developing efficient detection algorithms suitable for tunnel environment and encouraging other researchers to glean reliable tracking data for smarter and safer City.

A Tracking-by-Detection System for Pedestrian Tracking Using Deep Learning Technique and Color Information

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.1017-1028
    • /
    • 2019
  • Pedestrian tracking is a particular object tracking problem and an important component in various vision-based applications, such as autonomous cars and surveillance systems. Following several years of development, pedestrian tracking in videos remains challenging, owing to the diversity of object appearances and surrounding environments. In this research, we proposed a tracking-by-detection system for pedestrian tracking, which incorporates a convolutional neural network (CNN) and color information. Pedestrians in video frames are localized using a CNN-based algorithm, and then detected pedestrians are assigned to their corresponding tracklets based on similarities between color distributions. The experimental results show that our system is able to overcome various difficulties to produce highly accurate tracking results.

Depth tracking of occluded ships based on SIFT feature matching

  • Yadong Liu;Yuesheng Liu;Ziyang Zhong;Yang Chen;Jinfeng Xia;Yunjie Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1066-1079
    • /
    • 2023
  • Multi-target tracking based on the detector is a very hot and important research topic in target tracking. It mainly includes two closely related processes, namely target detection and target tracking. Where target detection is responsible for detecting the exact position of the target, while target tracking monitors the temporal and spatial changes of the target. With the improvement of the detector, the tracking performance has reached a new level. The problem that always exists in the research of target tracking is the problem that occurs again after the target is occluded during tracking. Based on this question, this paper proposes a DeepSORT model based on SIFT features to improve ship tracking. Unlike previous feature extraction networks, SIFT algorithm does not require the characteristics of pre-training learning objectives and can be used in ship tracking quickly. At the same time, we improve and test the matching method of our model to find a balance between tracking accuracy and tracking speed. Experiments show that the model can get more ideal results.

정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적 (Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization)

  • 장세인;박충식
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.53-65
    • /
    • 2019
  • 영상 기반의 보안 시스템의 증가함에 따라 각 용도마다 다른 다양한 객체들에 대한 처리들이 중요해지고 있다. 객체 추적은 객체 인식, 검출과 같은 작업들과 함께 필수적인 작업으로 다뤄진다. 이 객체 추적을 달성하기 위해서 다양한 머신러닝이 적용될 수 있다. 성공적인 분류기로써 전체 에러율 최소화(total-error-rate minimization) 기반의 방법론이 사용될 수 있다. 이 전체 에러율 최소화 기반의 방법론은 오프라인 학습을 기반으로 하고 있다. 객체 추적은 실시간으로 처리하며 갱신해야하는 것이 필수적이므로 온라인 학습(online learning)을 기반으로 하는 것이 적합하다. 온라인 전체 에러율 최소화 방법론이 개발되었지만 점근적으로 재가중되는(approximately reweighted) 작업이 포함되어 에러를 누적시킬 수 있다는 단점이 있다. 본 논문에서는 정확하게 재가중되는(exactly reweighted) 방법론을 제안하면서 온라인 전체 에러율 최소화가 달성되었다. 이 제안된 온라인 학습 방법론을 객체 추적에 적용하여 총 8개의 데이터베이스에서 다른 추적 방법론들 보다 좋은 성능이 달성되었다.

Deep-Learning Based Real-time Fire Detection Using Object Tracking Algorithm

  • Park, Jonghyuk;Park, Dohyun;Hyun, Donghwan;Na, Youmin;Lee, Soo-Hong
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2022
  • 본 논문에서는 실시간 객체 탐지(Real-time Object Detection)가 가능한 YOLOv4 모델과 DeepSORT 알고리즘을 활용한 객체 추적(Object Tracking) 기술을 활용하여 CCTV 영상 이미지 기반의 화재 탐지 시스템을 제안한다. 화재 탐지 모델은 10800장의 학습용 데이터로부터 학습되었으며 1000장의 별도 테스트 셋을 통해 검증되었다. 이후 DeepSORT 알고리즘을 통해 탐지된 화재 영역을 추적하여 단일 이미지 내의 화재 탐지율과 영상 내에서의 화재 탐지 유지성능을 증가시켰다. 영상 내의 한 프레임 혹은 단일 이미지에 대한 화재 탐지 속도는 장당 0.1초 이내로 실시간 탐지가 가능함을 확인하였으며 본 논문의 AI 화재 탐지 시스템은 기존의 화재 사고 탐지 시스템 보다 안정적이고 빠른 성능을 지니고 있어 화재현장에 적용 시 화재를 조기 발견하여 빠른 대처 및 발화단계에서의 진화가 가능할 것으로 예상된다.

딥러닝 기술을 이용한 3차원 객체 추적 기술 리뷰 (A Review of 3D Object Tracking Methods Using Deep Learning)

  • 박한훈
    • 융합신호처리학회논문지
    • /
    • 제22권1호
    • /
    • pp.30-37
    • /
    • 2021
  • 카메라 영상을 이용한 3차원 객체 추적 기술은 증강현실 응용 분야를 위한 핵심 기술이다. 영상 분류, 객체 검출, 영상 분할과 같은 컴퓨터 비전 작업에서 CNN(Convolutional Neural Network)의 인상적인 성공에 자극 받아, 3D 객체 추적을 위한 최근의 연구는 딥러닝(deep learning)을 활용하는 데 초점을 맞추고 있다. 본 논문은 이러한 딥러닝을 활용한 3차원 객체 추적 방법들을 살펴본다. 딥러닝을 활용한 3차원 객체 추적을 위한 주요 방법들을 설명하고, 향후 연구 방향에 대해 논의한다.