Deep Learning has become the most important technology in the field of artificial intelligence machine learning, with its high performance overwhelming existing methods in various applications. In this paper, an interactive window service based on object recognition technology is proposed. The main goal is to implement an object recognition technology using this deep learning technology to remove the existing eye tracking technology, which requires users to wear eye tracking devices themselves, and to implement an eye tracking technology that uses only usual cameras to track users' eye. We design an interactive system based on efficient eye detection and pupil tracking method that can verify the user's eye movement. To estimate the view-direction of user's eye, we initialize to make the reference (origin) coordinate. Then the view direction is estimated from the extracted eye pupils from the origin coordinate. Also, we propose a blink detection technique based on the eye apply ratio (EAR). With the extracted view direction and eye action, we provide some augmented information of interest without the existing complex and expensive eye-tracking systems with various service topics and situations. For verification, the user guiding service is implemented as a proto-type model with the school map to inform the location information of the desired location or building.
In a most recent object tracking research work, applying Convolutional Neural Network and Recurrent Neural Network-based strategies become relevant for resolving the noticeable challenges in it, like, occlusion, motion, object, and camera viewpoint variations, changing several targets, lighting variations. In this paper, the LSTM Network-based Tracking association method has proposed where the technique capable of real-time multi-object tracking by creating one of the useful LSTM networks that associated with tracking, which supports the long term tracking along with solving challenges. The LSTM network is a different neural network defined in Keras as a sequence of layers, where the Sequential classes would be a container for these layers. This purposing network structure builds with the integration of tracking association on Keras neural-network library. The tracking process has been associated with the LSTM Network feature learning output and obtained outstanding real-time detection and tracking performance. In this work, the main focus was learning trackable objects locations, appearance, and motion details, then predicting the feature location of objects on boxes according to their initial position. The performance of the joint object tracking system has shown that the LSTM network is more powerful and capable of working on a real-time multi-object tracking process.
In this paper, we proposed visual information to provide a highly maneuverable system for a tele-operator. The visual information image is bird's eye view from UFR(Unmanned Flying Robot) shows around UGR(Unmanned Ground Robot). We need UGV detection and tracking method for UFR following UGR always. The proposed system uses TLD(Tracking Learning Detection) method to rapidly and robustly estimate the motion of the new detected UGR between consecutive frames. The TLD system trains an on-line UGR detector for the tracked UGR. The proposed system uses the extended Kalman filter in order to enhance the performance of the tracker. As a result, we provided the tele-operator with the visual information for convenient control.
Roundabouts have strengths in traffic flow and safety but can present difficulties for inexperienced drivers. Demand to acquire and analyze drone images has increased to enhance a traffic environment allowing drivers to deal with roundabouts easily. In this paper, we propose a roundabout traffic analysis system that detects, tracks, and analyzes vehicles using a deep learning-based object detection model (YOLOv7) in drone images. About 3600 images for object detection model learning and testing were extracted and labeled from 1 hour of drone video. Through training diverse conditions and evaluating the performance of object detection models, we achieved an average precision (AP) of up to 97.2%. In addition, we utilized SORT (Simple Online and Realtime Tracking) and OC-SORT (Observation-Centric SORT), a real-time object tracking algorithm, which resulted in an average MOTA (Multiple Object Tracking Accuracy) of up to 89.2%. By implementing a method for measuring roundabout entry speed, we achieved an accuracy of 94.5%.
Mun, Sungchul;Nguyen, Manh Dung;Kweon, Seokkyu;Bae, Young Hoon
방송공학회논문지
/
제24권7호
/
pp.1266-1275
/
2019
With increasing criminal rates and number of CCTVs, much attention has been paid to intelligent surveillance system on the horizon. Object detection and tracking algorithms have been developed to reduce false alarms and accurately help security agents immediately response to undesirable changes in video clips such as crimes and accidents. Many studies have proposed a variety of algorithms to improve accuracy of detecting and tracking objects outside tunnels. The proposed methods might not work well in a tunnel because of low illuminance significantly susceptible to tail and warning lights of driving vehicles. The detection performance has rarely been tested against the tunnel environment. This study investigated a feasibility of object detection and tracking in an actual tunnel environment by utilizing YOLOv3 and Kernelized Correlation Filter. We tested 40 actual video clips to differentiate pedestrians and motorcycles to evaluate the performance of our algorithm. The experimental results showed significant difference in detection between pedestrians and motorcycles without false positive rates. Our findings are expected to provide a stepping stone of developing efficient detection algorithms suitable for tunnel environment and encouraging other researchers to glean reliable tracking data for smarter and safer City.
Pedestrian tracking is a particular object tracking problem and an important component in various vision-based applications, such as autonomous cars and surveillance systems. Following several years of development, pedestrian tracking in videos remains challenging, owing to the diversity of object appearances and surrounding environments. In this research, we proposed a tracking-by-detection system for pedestrian tracking, which incorporates a convolutional neural network (CNN) and color information. Pedestrians in video frames are localized using a CNN-based algorithm, and then detected pedestrians are assigned to their corresponding tracklets based on similarities between color distributions. The experimental results show that our system is able to overcome various difficulties to produce highly accurate tracking results.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권4호
/
pp.1066-1079
/
2023
Multi-target tracking based on the detector is a very hot and important research topic in target tracking. It mainly includes two closely related processes, namely target detection and target tracking. Where target detection is responsible for detecting the exact position of the target, while target tracking monitors the temporal and spatial changes of the target. With the improvement of the detector, the tracking performance has reached a new level. The problem that always exists in the research of target tracking is the problem that occurs again after the target is occluded during tracking. Based on this question, this paper proposes a DeepSORT model based on SIFT features to improve ship tracking. Unlike previous feature extraction networks, SIFT algorithm does not require the characteristics of pre-training learning objectives and can be used in ship tracking quickly. At the same time, we improve and test the matching method of our model to find a balance between tracking accuracy and tracking speed. Experiments show that the model can get more ideal results.
영상 기반의 보안 시스템의 증가함에 따라 각 용도마다 다른 다양한 객체들에 대한 처리들이 중요해지고 있다. 객체 추적은 객체 인식, 검출과 같은 작업들과 함께 필수적인 작업으로 다뤄진다. 이 객체 추적을 달성하기 위해서 다양한 머신러닝이 적용될 수 있다. 성공적인 분류기로써 전체 에러율 최소화(total-error-rate minimization) 기반의 방법론이 사용될 수 있다. 이 전체 에러율 최소화 기반의 방법론은 오프라인 학습을 기반으로 하고 있다. 객체 추적은 실시간으로 처리하며 갱신해야하는 것이 필수적이므로 온라인 학습(online learning)을 기반으로 하는 것이 적합하다. 온라인 전체 에러율 최소화 방법론이 개발되었지만 점근적으로 재가중되는(approximately reweighted) 작업이 포함되어 에러를 누적시킬 수 있다는 단점이 있다. 본 논문에서는 정확하게 재가중되는(exactly reweighted) 방법론을 제안하면서 온라인 전체 에러율 최소화가 달성되었다. 이 제안된 온라인 학습 방법론을 객체 추적에 적용하여 총 8개의 데이터베이스에서 다른 추적 방법론들 보다 좋은 성능이 달성되었다.
Park, Jonghyuk;Park, Dohyun;Hyun, Donghwan;Na, Youmin;Lee, Soo-Hong
한국컴퓨터정보학회논문지
/
제27권1호
/
pp.1-8
/
2022
본 논문에서는 실시간 객체 탐지(Real-time Object Detection)가 가능한 YOLOv4 모델과 DeepSORT 알고리즘을 활용한 객체 추적(Object Tracking) 기술을 활용하여 CCTV 영상 이미지 기반의 화재 탐지 시스템을 제안한다. 화재 탐지 모델은 10800장의 학습용 데이터로부터 학습되었으며 1000장의 별도 테스트 셋을 통해 검증되었다. 이후 DeepSORT 알고리즘을 통해 탐지된 화재 영역을 추적하여 단일 이미지 내의 화재 탐지율과 영상 내에서의 화재 탐지 유지성능을 증가시켰다. 영상 내의 한 프레임 혹은 단일 이미지에 대한 화재 탐지 속도는 장당 0.1초 이내로 실시간 탐지가 가능함을 확인하였으며 본 논문의 AI 화재 탐지 시스템은 기존의 화재 사고 탐지 시스템 보다 안정적이고 빠른 성능을 지니고 있어 화재현장에 적용 시 화재를 조기 발견하여 빠른 대처 및 발화단계에서의 진화가 가능할 것으로 예상된다.
카메라 영상을 이용한 3차원 객체 추적 기술은 증강현실 응용 분야를 위한 핵심 기술이다. 영상 분류, 객체 검출, 영상 분할과 같은 컴퓨터 비전 작업에서 CNN(Convolutional Neural Network)의 인상적인 성공에 자극 받아, 3D 객체 추적을 위한 최근의 연구는 딥러닝(deep learning)을 활용하는 데 초점을 맞추고 있다. 본 논문은 이러한 딥러닝을 활용한 3차원 객체 추적 방법들을 살펴본다. 딥러닝을 활용한 3차원 객체 추적을 위한 주요 방법들을 설명하고, 향후 연구 방향에 대해 논의한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.