• Title/Summary/Keyword: Tracking radar

Search Result 347, Processing Time 0.021 seconds

Development of Simulation Tool for Ship Self Defense Scenario Using Naval Multi Function Radar (함정용 다기능 레이다를 이용한 자함 방어 시나리오 시뮬레이션 도구 개발)

  • Park, Myung-Hoon;Kim, Chang-Hwan;Kim, Hyun-Seung;Go, Jin-Yong;Jeon, Woo-Joong;Kwon, Se-Woong;Lee, Ki-Won;Kang, Yeon-Duk;Yoo, Seung-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.87-96
    • /
    • 2020
  • The multi function radar is searching target and tracking through resource management at the same time. Increasing resource allotment of track, if more targets and faster the renewal rate of track, lead to decreasing quota of searching resource in limited resource. When the resource of search are decreased, it becomes degrade searching performance such as revisit time, number of detecting chance and tracking etc. Degraded performance of search reduces guided missile defense probability in complex strategy such as ship self defense. In this paper, we developed a modeling and simulation (M&S) tool that uses own-ship model, radar model, target model and defense model for analysis of self defense in complex strategy. We analyzed influence of ship self defense in complex strategy according to various target environments and track performance.

ISAR Imaging Using Rear View Radars of an Automobile (후방 감시 차량용 레이다를 이용한 ISAR 영상 형성)

  • Kang, Byung-Soo;Lee, Hyun-Seok;Lee, Seung-Jae;Kang, Min-Suk;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.245-250
    • /
    • 2014
  • This paper introduces the inverse synthetic aperture radar(ISAR) imaging technique for rear view target of an automobile, which uses both linear frequency modulation-frequency shift keying(LFM-FSK) waveform and monopulse tracking. LFM-FSK waveform consists of two sequential stepped frequency waveforms with some frequency offset, and thus, can be used to generate ISAR images of rear view target of an automobile. However, ISAR images can often be blurred due to non-uniform change rate of relative aspect angle between radar and target. In order to address this problem, one-dimensional(1-D) Lagrange interpolation technique in conjunction with angle information obtained from the monopulse tracking is applied to generate uniform data across the radar's aspect angle. Simulation results show that the proposed method can provide focused ISAR images.

Development of Power Supply for Ka-band Tracking Radars (Ka-대역 추적 레이더용 전원공급기 개발)

  • Lee, Dongju;An, Se-Hwan;Joo, Ji-Han;Kwon, Jun-Beom;Seo, Mihui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.99-103
    • /
    • 2022
  • Millimeter-wave tracking radars operate in various environmental restrictions, thus they demand stable power sources with low noise level under high fluctuation of input voltage. This paper presents the design and implementation of the compact power supply with max power of 727 W for Ka-band tracking radar applications. To meet requirements of voltage accuracy and system efficiency for transceiver circuits, upper plates of buck converters are attached on the covers of power supply for efficient heat dissipation. The proposed power supply achieves system efficiency of 88.4 %, output voltage accuracy of ±2 % and noise level of <1% under full load conditions.

Estimation of Launch Vehicle Tracking Error due to Radio Refraction (레이다 전파굴절에 의한 발사체 추적오차 추정)

  • Seo, Gwang-Gyo;Kim, Yoonsoo;Shin, Vladimir;Song, Ha-Ryong;Choi, Yong-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1076-1083
    • /
    • 2017
  • This paper discusses the error estimation in radar measurement data obtained while tracking a launch vehicle. It is known that typical radar measurement data consist of the true positional or orientation information on the vehicle being tracked, random noise and a deterministic bias due to radio refraction. Unlike previous research works, this paper proposes a tracking-error (mainly bias) estimation method solely based on the single radar measurement with no aid of other measurement such as GPS. The proposed method has been verified with real measurement data obtained while tracking the KSLV-I launch vehicle.

Design of a Variable Sampling Rate Tracking Filter for a Phased Array Radar (위상배열 레이다를 위한 가변 표본화 빈도 추적 필터의 설계)

  • Hong, Sun-Mog
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.155-163
    • /
    • 1992
  • The phased array antenna has the ability to perform adaptive sampling by directing the radar beam without inertia in any direction. The adaptive sampling capability of the phased array antenna allows each sampling time interval to be varied for each target, depending on the acceleration of each target at any time. In this paper we design a three-dimensional adaptive tracking algorithm for the phased array radar system with a given set of measurement parameters. The tracking algorithm avoids taking unnecessarily frequent samples, while keeping the angular prediction error within a fraction of antenna beamwidth so that the probability of detection will not be degraded during a track update illuminations. In our algorithm, the target model and the sampling rate are selected depending on the target range and the target maneuver status which is determined by a maneuver detector. A detailed simulation is conducted to test the validity of our tracking algorithm for encounter geometries under various conditions of maneuver.

  • PDF

Development of Target Signal Simulator for Multi-Beam Type FMCW Radar (다중빔 방식의 FMCW 레이더 표적신호 시뮬레이터 개발)

  • Lee, Seung-Youn;Choe, Tok-Son;Jung, Young-Hun;Lee, Seok-Jae;Yoon, Joo-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.343-349
    • /
    • 2012
  • To detect targets for autonomous navigation of unmanned ground vehicle, mounted sensors are required to work all-weather condition. In this point of view, the FMCW radar is quietly appropriate. In this paper, we present development results of target signal simulator for multi-beam type FMCW radar. A target signal simulator make pseudo target signals which simulates multiple moving targets. And we describe how to make hit information for each target in multi-beam type radar. The developed methods are utilized for target tracking device. Moreover it can be applied to similar target signal simulator.

Pulse Doppler Radar Signal Processor Development for Main Battle Tank Using High Speed Multi-DSP (고속 Multi-DSP를 이용한 전차 탑재 펄스 도플러 레이더 신호 처리기 개발)

  • Park, Gyu-Churl;Ha, Jong-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1171-1177
    • /
    • 2009
  • A missile warning radar is an essential sensor for active protection system to detect antitank missile in all weather environments. This paper introduces missile warning radar for main battle tank and presents the results of the design and implementation of the radar signal processor using high speed multi-DSP. The key algorithms include adaptive CF AR, weighted linear fitting algorithm, S/W tracking capability, and threat decision and present test result.

Implementation of Slaving Data Processing Function for Mission Control System in Space Center (우주센터 발사통제시스템의 추적연동정보 처리기능 구현)

  • Choi, Yong-Tae;Ra, Sung-Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.31-39
    • /
    • 2014
  • In KSLV-I launch mission, real-time data from the tracking stations are acquired, processed and distributed by the Mission Control System to the user group who needed to monitor processed data for safety and flight monitoring purposes. The processed trajectory data by the mission control system is sent to each tracking system for target designation in case of tracking failure. Also, the processed data are used for decision making for flight termination when anomalies occur during flight of the launch vehicle. In this paper, we propose the processing mechanism of slaving data which plays a key role of launch vehicle tracking mission. The best position data is selected by predefined logic and current status after every available position data are acquired and pre-processed. And, the slaving data is distributed to each tracking stations through time delay is compensated by extrapolation. For the accurate processing, operation timing of every procesing modules are triggered by time-tick signal(25ms period) which is driven from UTC(Universial Time Coordinates) time. To evaluate the proposed method, we compared slaving data to the position data which received by tracking radar. The experiments show the average difference value is below 0.01 degree.

Robust Maneuvering Target Tracking Applying the Concept of Multiple Model Filter and the Fusion of Multi-Sensor (다중센서 융합 및 다수모델 필터 개념을 적용한 강인한 기동물체 추적)

  • Hyun, Dae-Hwan;Yoon, Hee-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.51-64
    • /
    • 2009
  • A location tracking sensor such as GPS, INS, Radar, and optical equipments is used in tracking Maneuvering Targets with a multi-sensor, and such systems are used to track, detect, and control UAV, guided missile, and spaceship. Until now, Most of the studies related to tracking Maneuvering Targets are on fusing multiple Radars, or adding a supplementary sensor to INS and GPS. However, A study is required to change the degree of application in fusions since the system property and error property are different from sensors. In this paper, we perform the error analysis of the sensor properties by adding a ground radar to GPS and INS for improving the tracking performance by multi-sensor fusion, and suggest the tracking algorithm that improves the precision and stability by changing the sensor probability of each sensor according to the error. For evaluation, we extract the altitude values in a simulation for the trajectory of UAV and apply the suggested algorithm to carry out the performance analysis. In this study, we change the weight of the evaluated values according to the degree of error between the navigation information of each sensor to improve the precision of navigation information, and made it possible to have a strong tracking which is not affected by external purposed environmental change and disturbance.

  • PDF

A Study on the Reaction Time Reduction Method for the ECM System by using the Feed-back Tracking-gate Filtering (귀환 추적게이트 필터링에 의한 ECM 체계 반응시간 단축 방법에 관한 연구)

  • Kim, So-Yeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.77-86
    • /
    • 2006
  • Usually, a tracking-gate of the tracker is used to track the target radar signal in the active ECM system. In this paper, we propose the feed-back tracking-gate filtering method. The designed method applies a tracking-gate of the tacker to the ECM system's receiver as a rejection or pass filter selected by the receiver's purpose, and the specific target signals can be passed or rejected though this tracking-gate filter. Thus, the number of input signals within the receiver's search band is minimized owing to this filter except the target signals. In conclusion, the EW equipment's reaction time can be reduced and the error value about the target signals can be lower than the previous methods'.