• Title/Summary/Keyword: Tracking in clutter

Search Result 82, Processing Time 0.029 seconds

Hough Transform Clutter Reduction Algorithm for Piecewise Linear Path Active Sonar Target Detection and Tracking Improvement (구간선형기동 능동소나표적 탐지 추적 성능향상을 위한 허프변환 클러터제거 알고리즘)

  • Kim, Seong-Weon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.354-360
    • /
    • 2013
  • In this paper, it is discussed that the detection and tracking performance of the piecewise linear path underwater target is improved using clutter reduction algorithm in heavy clutter density environment. Through clutter reduction algorithm using Hough Transform, measurements which represent clutter features are removed and the performance of target tracking on the remaining measurements is demonstrated applying CMKF-L(Converted Measurement Kalman Filter with Linearization) as tracking filter. Algorithm performance test is conducted using simulation data and real sea-trial data and by applying the proposed algorithm in heavy clutter density environment, it is confirmed that the target is tracked consistently and stably with clutter rejected measurements.

Robust Generalized Labeled Multi-Bernoulli Filter and Smoother for Multiple Target Tracking using Variational Bayesian

  • Li, Peng;Wang, Wenhui;Qiu, Junda;You, Congzhe;Shu, Zhenqiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.908-928
    • /
    • 2022
  • Multiple target tracking mainly focuses on tracking unknown number of targets in the complex environment of clutter and missed detection. The generalized labeled multi-Bernoulli (GLMB) filter has been shown to be an effective approach and attracted extensive attention. However, in the scenarios where the clutter rate is high or measurement-outliers often occur, the performance of the GLMB filter will significantly decline due to the Gaussian-based likelihood function is sensitive to clutter. To solve this problem, this paper presents a robust GLMB filter and smoother to improve the tracking performance in the scenarios with high clutter rate, low detection probability, and measurement-outliers. Firstly, a Student-T distribution variational Bayesian (TDVB) filtering technology is employed to update targets' states. Then, The likelihood weight in the tracking process is deduced again. Finally, a trajectory smoothing method is proposed to improve the integrative tracking performance. The proposed method are compared with recent multiple target tracking filters, and the simulation results show that the proposed method can effectively improve tracking accuracy in the scenarios with high clutter rate, low detection rate and measurement-outliers. Code is published on GitHub.

Maneuvering Target Tracking by Perception Net in Clutter Environment (클러터 환경하에서 Perception Net을 이용한 기동 표적 추적)

  • 황태현;최재원;홍금식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.602-605
    • /
    • 1995
  • In this paper, we provide the new alogorithm for maneuvering target tracking in clutter environment using perception net. The perception net, as a structural representation of the sensing capabilities of a system, may supply the constraints that target must be satisfied with. The results form perception net applying to IMMPDA are compared with those obtained from IMMPDA.

  • PDF

Multi-target Tracking Filters and Data Association: A Survey (다중표적 추적필터와 자료연관 기법동향)

  • Song, Taek Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.313-322
    • /
    • 2014
  • This paper is to survey and put in perspective the working methods of multi-target tracking in clutter. This paper includes theories and practices for data association and related filter structures and is motivated by increasing interest in the area of target tracking, security, surveillance, and multi-sensor data fusion. It is hoped that it will be useful in view of taking into consideration a full understanding of existing techniques before using them in practice.

On using Bayes Risk for Data Association to Improve Single-Target Multi-Sensor Tracking in Clutter (Bayes Risk를 이용한 False Alarm이 존재하는 환경에서의 단일 표적-다중센서 추적 알고리즘)

  • 김경택;최대범;안병하;고한석
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.159-162
    • /
    • 2001
  • In this Paper, a new multi-sensor single-target tracking method in cluttered environment is proposed. Unlike the established methods such as probabilistic data association filter (PDAF), the proposed method intends to reflect the information in detection phase into parameters in tracking so as to reduce uncertainty due to clutter. This is achieved by first modifying the Bayes risk in Bayesian detection criterion to incorporate the likelihood of measurements from multiple sensors. The final estimate is then computed by taking a linear combination of the likelihood and the estimate of measurements. We develop the procedure and discuss the results from representative simulations.

  • PDF

A study on the improvement of robust automatic initiated tracking on narrowband target (협대역표적 추적자동개시의 견실성 향상에 대한 연구)

  • Kim, Seong-Weon;Cho, Hyeon-Deok;Kwon, Taek-Ik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.549-558
    • /
    • 2020
  • In this paper, the method is discussed such that the robustness of automatic initiated narrowband target tracking is improved in passive sonar. In the case of automatic tracking initiation as target in passive sonar, due to a number of clutter, the clutter is initiated as target and tracked which prohibits the operation capability. The associated probability and information entropy of measurements, extracted from detection data, is calculated to keep going on automatic target initiation and tracking of true target, but reduce the automatic initiation and tracking of clutter. If the association probability and information entropy of the extracted measurements is satisfied for the predefined conditions, the procedure of automatic initiation begins. Using sea-trial data, simulations are executed and the results from the proposed method indicate that it keeps the automatic target initiation and tracking of true target and suppresses the automatic target initiation and tracking of clutters in contrary to the conventional method.

A Method of Fast Track Merging for Multi-Target Tracking under Heavy Clutter Environment (복잡한 환경에서 다중표적추적을 위한 고속 트랙병합 기법)

  • Lee, Seung-Youn;Yoon, Joo-Hong;Lee, Seok-Jae;Jung, Young-Hun;Choe, Tok-Son
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.513-518
    • /
    • 2012
  • In this paper, we proposed a method of fast track merging which is the foundation of track to track association technique. The existing method of track merging is performed throughout comparison between tracks to tracks. Therefore, it has heavy calculation time. In our research, we developed a method for fast clustering by using nearest neighbor measurement identification. The simulation results show that the proposed method is more faster than previous method about 3.3%. We expect that this method could be effectively used in multi-target tracking particularly in heavy clutter environment.

Design of Robust Fuzzy-Logic Tracker for Noise and Clutter Contaminated Trajectory based on Kalman Filter

  • Byeongil Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.249-256
    • /
    • 2024
  • Traditional methods for monitoring targets rely heavily on probabilistic data association (PDA) or Kalman filtering. However, achieving optimal performance in a densely congested tracking environment proves challenging due to factors such as the complexities of measurement, mathematical simplification, and combined target detection for the tracking association problem. This article analyzes a target tracking problem through the lens of fuzzy logic theory, identifies the fuzzy rules that a fuzzy tracker employs, and designs the tracker utilizing fuzzy rules and Kalman filtering.

A Study of Automatic Multi-Target Detection and Tracking Algorithm using Highest Probability Data Association in a Cluttered Environment (클러터가 존재하는 환경에서의 HPDA를 이용한 다중 표적 자동 탐지 및 추적 알고리듬 연구)

  • Kim, Da-Soul;Song, Taek-Lyul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1826-1835
    • /
    • 2007
  • In this paper, we present a new approach for automatic detection and tracking for multiple targets. We combine a highest probability data association(HPDA) algorithm for target detection with a particle filter for multiple target tracking. The proposed approach evaluates the probabilities of one-to-one assignments of measurement-to-track and the measurement with the highest probability is selected to be target- originated, and the measurement is used for probabilistic weight update of particle filtering. The performance of the proposed algorithm for target tracking in clutter is compared with the existing clustering algorithm and the sequential monte carlo method for probability hypothesis density(SMC PHD) algorithm for multi-target detection and tracking. Computer simulation studies demonstrate that the HPDA algorithm is robust in performing automatic detection and tracking for multiple targets even though the environment is hostile in terms of high clutter density and low target detection probability.

Performance Evaluation of the Modified IMMPDA Filter Using 3-D Maneuvering Targets In Clutter (클러터 환경하에서 3 차원 기동표적을 사용한 수정된 IMMPDA 필터의 성능 분석)

  • 김기철;홍금식;최성린
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.211-211
    • /
    • 2000
  • The multiple targets tracking problem has been one of main issues in the radar applications area in the last decade. Besides the standard Kalman filtering, various methods including the variable dimension filter, input estimation filter, interacting multiple model (IMM) filter, federated variable dimension filter with input estimation, probable data association (PDA) filter etc. have been proposed to address the tracking and sensor fusion issues. In this paper, two existing tracking algorithms, i.e. the IMMPDA filter and the variable dimension filter with input estimation (VDIE), are combined for the purpose of improving the tracking performance of maneuvering targets in clutter. To evaluate the tracking performance of the proposed algorithm, three typical maneuvering patterns i.e. Waver, Pop-Up, and High-Diver motions, are defined and are applied to the modified IMMPDA filter considered as well as the standard IMM filter. The smaller RMS tracking errors, in position and velocity, of the modified IMMPDA filter than the standard IMM filter are demonstrated through computer simulations.

  • PDF