• Title/Summary/Keyword: Tracking Time

Search Result 3,286, Processing Time 0.035 seconds

Development of landmark tracking system (표식 인식 시스템의 개발)

  • 권승만;이상룡
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.642-645
    • /
    • 1991
  • This paper presents the results of research on hardware and software of the landmark tracking system to the positions of moving robot in real time. The landmark tracking system is composed of CCD camera, landmark, strobo system and image processing board. The algorithm calculates the position and direction by using the coordinate transformation fomula after calculating the centroid and rotation angle of landmark at fixed position using the image data. The experiment is performed with landmark tracking system is loaded on xyz-table. XYZ-table is used for identifying the true position in our experiment. The results shows that this system has high performance with maxima error of .+-.1 pixels.

  • PDF

Study of optimal controller design & experiment to minimize tracking error (추적오차를 최소화 하기위한 최적제어기 설계및 실현화에 관한 연구)

  • 김광태;김재환;김영수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.164-168
    • /
    • 1988
  • This paper utilizes an optimal control law for the accurate tracking servo system design. The devivation of a simple control law implementing microprocessor is made to minimize position and speed error of the controller. The 16 bit microprocessor receives command angular position and calculate the control algorithm for accurate tracking and provides control system gain scheduling to achieve very short settling time. Simulation results and some experimental results of the position controlled tracking using 4.5Kw DC servo motor are shown.

  • PDF

Particle tracking algorithm for the Lagrangian-Eulerian finite element method

  • 석희준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.97-100
    • /
    • 2004
  • Multivariate Newton Raphson method is developed to perform the particle tracking in the three dimensional area using four objective functions. In this method, three variables are solved to compute target point and actual and real tracking time. The simulated pathlines in various types of three dimensional elements are well matched with exact pathline.

  • PDF

Pole-zero placement self-tuning controller minimizing tracking error (추종 오차를 최소화하는 극-영점 배치 자기 동조 제어기)

  • 한규정;이종용;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.179-181
    • /
    • 1987
  • In this paper, a self-tuning controller design is proposed by using pole-zero placement method and considering a system time delay. To got better tracking for the generalized self-tuning controller, pole placement method for the closed loop system and zero placement method for the error transfer function are Introduced. The proposed method shows better efficiency than pole placement method for minimizing tracking error. Simulation gives good results in tie reference signal tracking.

  • PDF

Closed-Form Solution of ECA Target-Tracking Filter using Position and Velocity Measurements

  • Yoon, Yong-Ki;Hong, Sun-Mog
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.23-27
    • /
    • 1997
  • Presented are closed-form expressions of the three-state exponentially correlated acceleration (ECA) target-tracking filter. The steady-state solution is derived based on Vaughan's approach for the case that he measurements of target position and velocity are available at discrete point in time. The solution for ECA tracking filter using only position measurements and the solution for the constant acceleration (CA) tracking filter are obtained as a special case of the presented results.

  • PDF

Efficiency Analysis Solar Cell of the Dynamic Boat's by SPA (SPA에 의한 동적인 보트의 태양전지 효율 분석)

  • Han, Jong-Ho;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1529-1536
    • /
    • 2011
  • Recently, worldwide government policy is pursuing saving energy and preservation. add to this, the solar cells are getting the spotlight nonpolluting energy source, using a variety of products for solar cell. in this paper, we'll make solar tracking system for suitable of dynamic boat. we knew that general boats are using fixed solar cell, it's first time to use tracking system of solar cells for boats so it is hard to application. To solve this problem in this paper we use to a magnetic compass and GPS for suitable solar tracking system of dynamic movement and to analyze fixed and tracking solar system. frist. solar tracking device is designed two-axis control system. one-axis control system is taken a magnetic compass for making efficiency defence solar tracking sensor, two-axis control system apply GPS latitude and longitude data for SPA(Solar position algorithm) so we know the azimuth and altitude. it analyze data value of accuracy comparison from result. so the proposed algorithm confirm to have validity.

Multiple Moving Person Tracking Based on the IMPRESARIO Simulator

  • Kim, Hyun-Deok;Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.331-336
    • /
    • 2008
  • In this paper, we propose a real-time people tracking system with multiple CCD cameras for security inside the building. To achieve this goal, we present a method for 3D walking human tracking based on the IMPRESARIO framework incorporating cascaded classifiers into hypothesis evaluation. The efficiency of adaptive selection of cascaded classifiers has been also presented. The camera is mounted from the ceiling of the laboratory so that the image data of the passing people are fully overlapped. The implemented system recognizes people movement along various directions. To track people even when their images are partially overlapped, the proposed system estimates and tracks a bounding box enclosing each person in the tracking region. The approximated convex hull of each individual in the tracking area is obtained to provide more accurate tracking information. We have shown the improvement of reliability for likelihood calculation by using cascaded classifiers. Experimental results show that the proposed method can smoothly and effectively detect and track walking humans through environments such as dense forests.

A TRACKING FILTER WITH PSEUDO-MEASUREMENTS IN LINE-OF-SIGHT CARTESLAN COORDICATE SYSTEM

  • Sung, Tae-Kyung;Lee, Jang-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.125-130
    • /
    • 1991
  • This paper presents a tracking filter using pseudomeasurements in an estimated line-of-sight Cartesian coordinate system(ELCCS) whose x-axis is on the line-of-sight to an estimated target position. A target dynamics model and a measurement equation in the ELCCS are derived first and then a tracking filter in the ELCCS named moving coordinate tracking filter(MCTF) is proposed. It is shown that this MCTF is equivalent to a Kalman filter in the inertial Cartesian coordinate system which is widely used in the target tracking system. By approximating the MCTF for a pseudomeasurement noise and an error covariance matrix in the ELCCS, decoupling of three axes can be achieved. In this case, named decoupled moving coordinate tracking filter(DMCTF), computation time can be drastically reduced by utilizing its parallel structure. Finally, the stochastic properties of the MCTF and DMCTF are presented. Especially, a sufficient condition of nondestabilizing deviation for the DMCTF is proposed. The performance of the MCTF and DMCTF are compared with a conventional Kalman tracking filter.

  • PDF

Compensation of Sun Tracking Error caused by the Heliostat Geometrical Error through the Canting of Heliostat Mirror Facets (반사거울 설치 방향 조정에 의한 Heliostat 기구오차에서 기인하는 태양추적오차의 보정)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.22-31
    • /
    • 2009
  • Canting is the optical alignment of mirror facets of heliostat such that the heliostat could focus the energy as a unit concentrator. Canting could improve the optical performance of heliostat and thus improves the efficiency of heliostat and ultimately improves the efficiency of the solar thermal power plant. This study discusses the effect of mirror canting, especially off-axis canting, used to compensate the sun tracking error caused by the heliostat geometrical errors. We first show that the canting could compensate the sun tracking error caused by the heliostat geometrical errors. Then we show that the proper canting time could exist, depending on the heliostat location. Finally we show how much the sun tracking performance could be improved by canting, by providing RMS sun tracking error. The limitation and caution of using canting to improve the sun tracking performance are also discussed.

An Advanced Visual Tracking and Stable Grasping Algorithm for a Moving Object (시각센서를 이용한 움직이는 물체의 추적 및 안정된 파지를 위한 알고리즘의 개발)

  • 차인혁;손영갑;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.175-182
    • /
    • 1998
  • An advanced visual tracking and stable grasping algorithm for a moving object is proposed. The stable grasping points for a moving 2D polygonal object are obtained through the visual tracking system with the Kalman filter and image prediction technique. The accuracy and efficiency are improved more than any other prediction algorithms for the tracking of an object. In the processing of a visual tracking. the shape predictors construct the parameterized family and grasp planner find the grasping points of unknown object through the geometric properties of the parameterized family. This algorithm conducts a process of ‘stable grasping and real time tracking’.

  • PDF