• 제목/요약/키워드: Tracking Error

검색결과 1,497건 처리시간 0.036초

클램핑 공정을 위한 유압실린더-부하계의 다축 위치 동기제어 (Multiple Axes Position Synchronizing Control of Hydraulic-Cylinder Load System for Clamping Process)

  • 조승호
    • 한국정밀공학회지
    • /
    • 제31권1호
    • /
    • pp.51-57
    • /
    • 2014
  • This paper presents a synchronizing adaptive feedforward control for clamping servomechanism of injection molding machines. Based on MBS, virtual design model has been developed for a direct forcing clamping mechanism. A synchronizing controller is designed and combined with adaptive feedforward control to accommodate mismatches between the real plant and the linear plant model used. From tracking control simulations, it is shown that significant reduction in position tracking error is achieved through the use of proposed control scheme.

완만한 곡선경로 추적용 이륜 용접이동로봇의 제어 (Control of Two-Wheeled Welding Mobile Robot For Tracking a Smooth Curved Welding Path)

  • ;;김학경;김상봉
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.85-86
    • /
    • 2006
  • In this paper, a nonlinear controller based on adaptive sliding-mode method which has a sliding surface vector including new boundary function is proposed and applied to a two-wheeled voiding mobile robot (WMR). This controller makes the welding point of WMR achieve tracking a reference point which is moving on a smooth curved welding path with a desired constant velocity. The mobile robot is considered in view of a kinematic model and a dynamic model in Cartesian coordinates. The proposed controller can overcome uncertainties and external disturbances by adaptive sliding-mode technique. To design the controller, the tracking error vector is defined, and then the new sliding is proposed to guarantee that the error vector converges to zero asymptotically. The stability of the dynamic system will be shown through the Lyapunov method. The simulations is shown to prove the effectiveness of the proposed controller.

  • PDF

초음파센서와 관성센서를 이용한 발의 움직임 추적 시스템 (Foot Movement Tracking System using Ultrasonic Sensors and Inertial Sensors)

  • 부장훈;박상경;서영수
    • 제어로봇시스템학회논문지
    • /
    • 제16권11호
    • /
    • pp.1117-1124
    • /
    • 2010
  • This paper presents a foot movement tracking system using ultrasonic sensors and inertial sensors, where the position and velocity of foot are computed using inertial sensors and ultrasonic sensors mounted on a shoe. A foot movement can be estimated using an inertial navigation algorithm only; however, the error tends to increase due to biases of gyroscopes and accelerometers. To reduce the error, a localization system using ultrasonic sensors is additionally used. In the localization system using ultrasonic sensors, the position is continuously calculated in the absolute coordinate. An indirect Kalman filter is used to combine inertial sensors and ultrasonic sensors. Through experiments, it is shown that the proposed system can track a foot movement.

외란관측기를 이용한 리니어 서보메커니즘의 최적튜닝 (Optimal Tuning of Linear Servomechanisms using a Disturbance Observer)

  • 홍승환;정성종
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.926-931
    • /
    • 2008
  • In order to design a high-performance controller with excellent positioning and tracking performance, an optimal tuning method based on the integrated design concept is studied. DOBs, feedforward controllers and CCC are applied to control the bi-axial linear servomechanism. To derive accurate dynamic models of mechanical subsystems equipped with linear servos for the integrated tuning, system identification processes are conducted through the sine sweeping. An optimal tuning problem with stability, robustness and overshoot constraints is formulated as a nonlinear constrained optimization problem. Optimal gains are obtained through the SQP method. Experimental results confirm that both tracking and contouring errors are significantly reduced by applying the proposed controller and integrated tuning method.

  • PDF

Zigbee를 이용한 실외 위치추정 시스템 구현 (Implementation of the outdoor location tracking system by using Zigbee)

  • 김환용;임순자
    • 한국산학기술학회논문지
    • /
    • 제13권1호
    • /
    • pp.306-310
    • /
    • 2012
  • 위치추정 서비스는 사물이나 사람의 위치를 추정하여 표현하는 것으로, 본 논문에서는 Zigbee를 지원하는 RF칩인 CC2420칩셋을 통한 네트워크 환경을 실외에 구축하고, 이동노드를 이용하여 GPS에서 얻어진 이동노드에 대 한 위치정보를 수신한다. 이동노드의 위치정보는 구축된 네트워크 환경에서 싱크노드에 전달함으로서 실시간으로 위치를 추정할수 있게 되며 실외환경에서 위치추정 오차는 3m 내에서 나타났으며 이는 육안으로 쉽게 판별가능한 범위이고 Google Maps을 이용하여 위치를 표현해 내었다.

헤드/아이 통합 트랙커 개발 및 통합 성능 검증 (Developing Head/Eye Tracking System and Sync Verification)

  • 김정호;이대우;허세종;박찬국;백광열;방효충
    • 제어로봇시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.90-95
    • /
    • 2010
  • This paper describes the development of integrated head and eye tracker system. Vision based head tracker is performed and it has 7mm error in 300mm translation. The epi-polar method and point matching are used for determining a position of head and rotational degree. High brightness LEDs are installed on helmet and the installed pattern is very important to match the points of stereo system. Eye tracker also uses LED for constant illumination. A Position of gazed object(3m distance) is determined by pupil tracking and eye tracker has 1~5 pixel error. Integration of result data of each tracking system is important. RS-232C communication is applied to integrated system and triggering signal is used for synchronization.

위상배열레이더 추적 각도예측의 정확도 정량화 (Quantification of Angular Prediction Accuracy for Phased Array Radar Tracking)

  • 홍순목
    • 전자공학회논문지SC
    • /
    • 제49권1호
    • /
    • pp.74-79
    • /
    • 2012
  • 위상배열레이더를 이용한 추적의 성능을 지수화하기 위해서 각도예측 오차공분산행렬의 함수를 이용한 정량화 방법에 대해 검토하였다. 특히, 이 오차공분산행렬의 함수로 최대고유값과 대각합을 이용하여 정량화하는 경우에 대해 안테나 빔조향 손실을 반영한 표적탐지확률을 기준으로 정량화의 일관성을 수치실험을 통해 검토하였다. 이를 통해 추적성능을 표적탐지확률로 기준하는 경우, 대각합이 최대고유값 보다 더 일관성을 갖는 정량화 함수임을 확인하였다.

크로스 커플링을 이용한 이동 로봇의 경로제어에 관한 연구 (A Study on Path Tracking Control for Mobile Robot Using Cross Coupling)

  • 한영석;이쾌희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2351-2353
    • /
    • 1998
  • This paper suggests the wheel controller for PWS(Power Wheeled Steering) mobile robot. The proposed controller consists of two parts. To control each motor, the sliding mode controller implemented. This method has robustness about modeling error and disturbance, so the velocity tracking is well guaranteed in the presence of varying load. The design of a fuzzy cross-coupling controller for a PWS mobile robot is described here. Fuzzy cross-coupling control directly minimizes the tracking error by coordinating the motion of the two drive wheels. The fuzzy cross-coupling controller has excellent disturbance rejection and therefore is advantageous when the robot is not loaded symmetrically. The capability of the proposed controller was verified through the computer simulation.

  • PDF

비선헝 마찰 보상기를 이용한 램프추종 서보제어기에 관한 연구 (A study on the ramp tracking servo controller using nonlinear friction compensator)

  • 최승환;임동진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.426-428
    • /
    • 1998
  • In this paper, a ramp tracking controller design method is proposed for the systems with nonlinear frictions. The objective is to design a controller which is capable of tracking a ramp reference input without steady state error. The controller is composed of a linear controller, integrators for error compensation, and a friction compensator. The compensator estimates the parameters of friction model. The friction parameters are estimated using two different method. Simulation and experimental results show that the proposed method is effective.

  • PDF

고정밀 운동제어를 위한 2축 서보메커니즘의 최적튜닝 (Optimal Tuning of Bi-axial Servomechanisms for High-Precision Motion Control)

  • 성철모;정성종
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.44-51
    • /
    • 2008
  • In this paper, the optimal tuning of a cross-coupled controller linked with the feedforward controller is studied to reduce contouring and tracking errors of a bi-axial servomechanisms by using the previously developed integrated tuning method. The CCC system for an arbitrary curve, which is combined with the feedforward controller, is formulated by a state-space based on a series of linear motion trajectories. An optimal tuning problem is formulated as a nonlinear constrained optimization problem including relevant controller parameters of the servo. To verify the effectiveness of the proposed optimal tuning procedure, linear and circular motion experiments are performed on the xy-table. Experimental results confirm that both tracking and contouring errors are significantly reduced by applying the proposed control and tuning system.