• Title/Summary/Keyword: Trackers

Search Result 100, Processing Time 0.021 seconds

Overview of Star Tracker Technology and Its Development Trends (별추적기의 기술개요와 개발동향)

  • Ju, Gwang-Hyeok;Lee, Sang-Ryool
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.300-308
    • /
    • 2010
  • In order to accelerate the evolution of faster, better, cheaper spacecraft, it is evident that greatly enhanced general-purpose attitude determination methods are needed Currently, star tracker sensors based on charge coupled devices (CCD) or active pixel sensors(APS) enable one to obtain the best spacecraft attitude estimation among the existing sensors for attitude determination. In this paper, basic principles of star tracker technology are explained including major issues arising in design and development of star tracker. Also, an historical overview and worldwide survey associated with various star trackers from star scanner through microelectromechanical system(MEMS)-based star tracker is offered.

Design of the Extended Kalman Filter for Frequency-amplitude Tracker (확장칼만필터 주파수-진폭 추적기 설계)

  • 윤종락;노용주;전재진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.256-263
    • /
    • 2002
  • In this study, the tracking of the temporal variation of the frequency and the amplitude in the presence of additive white Gaussian noise is considered using the Extended Kalman filter (EKF. The EKF has many applications and it has been applied to the problem of tracking the time-variable frequency. However the existing EKF frequency trackers could was driven in the small time-variable amplitude or required the additional amplitude tracker in the large time-variable amplitude. In this study, the EKF frequency-amplitude tracker, which could track both frequency and amplitude simultaneously from the measured signal in the relatively large time-variable amplitude environment, is proposed for improving the performance of the time-variable frequency tracking and its performance is verified by the simulation and the experimental work.

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.

AOCS On-orbit Calibration for High Agility Imaging LEO Satellite (고기동 영상촬영 저궤도 위성 자세제어계 궤도상 보정)

  • Yoon, Hyungjoo;Park, Keun Joo;Yim, Jo Ryeong;Choi, Hong-Taek;Seo, Doo Chun
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.80-86
    • /
    • 2012
  • A fast maneuvering LEO satellite producing high resolution images was developed by Korea Aerospace Research Institute and launched successfully. To achieve accurate pointing and stringent pointing stability, the attitude orbit control subsystem implements high performance star trackers and gyroscopes. In addition, series of on-orbit calibration need to be performed to compensate mainly misalignment errors due to launch shock and on-orbit thermal environment. In this paper, the on-orbit calibration approach is described with the performance enhancement result through flight data analysis.

Performance Analysis of Missile/Rocket Defense System for RPG-7 Defense of Main Battle Tank (미사일/로켓 방어체계의 RPG-7에 대한 전차방호 성능분석)

  • Ha, Jong-Soo;Lee, Eui-Hyuk;Lee, Hyun-Ah;Park, Gyu-Churl;Cho, Kyu-Gong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.350-357
    • /
    • 2014
  • MRDS is a short range missile/rocket defense system which protects a main battle tank(MBT) from threats at a short range. It is composed of 2 radars, 2 infrared trackers(IRT)s, 1 fire control computer(FCC), 2 launchers and countermeasures. In this paper, the radar and the IRT models based on sensing errors, the FCC model based on filtering errors, the launcher model based on driving errors and the countermeasure model based on flying errors are proposed to analyze the defense performance with the approaching RPG-7 and the moving MBT. The simulation results are presented to evaluate and verify the effectiveness of the proposed method.

Methodology of System Alignment using Angular Error Compensation Among Multi-Axes (다중 좌표계간 각도오차 보정을 통한 체계정렬 기법)

  • Ha, Jong-Soo;Lee, Eui-Hyuk;Lee, Hyun-Ah;Park, Gyu-Churl;Cho, Kyu-Gong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.342-349
    • /
    • 2014
  • MRDS is a short range missile/rocket defense system which protects a main battle tank(MBT) from threats in a short range. It is composed of 2 radars, 2 infrared trackers(IRTs), 1 fire control computer(FCC), 2 launchers and countermeasures. To guarantee the performance of the MRDS, these components have to be mounted on the vehicle with the known positions and directions and it is required to compensate the alignment errors. In this paper, a system alignment method using angular error compensation is proposed to install its components within a tolerance on the MBT. The test results are presented to evaluate and verify the effectiveness of the proposed method.

A Study on The Gamification Elements of Eye-tracker for Improving Attention Concentration of Children with Quadratic Palsy with Intellectual Disability (지적장애를 동반한 사지마비형 뇌성마비 아동의 주의집중력 향상을 위한 아이트래커기반 게임화 요소 연구)

  • Jeong, Yoona;Woo, Tack
    • Journal of Korea Game Society
    • /
    • v.20 no.4
    • /
    • pp.57-66
    • /
    • 2020
  • In this paper, we analyze the interaction features using eye-tracker and the characteristics of attention concentration of children with intellectual disabilities, and present gamification elements that can be used when designing digital contents for them. For children with quadriplegic cerebral palsy, eye-trackers will increase the accessibility of digital contents. Foreground gamification can be used for selective attention concentration, background gamification and intrinsic motivation to sustain attention concentration, and foreground gamification and extrinsic motivation for mobility.

The Behavioral Analysis of Dance Sports Judge's Visual Searching Strategies: Focusing on the Skating System

  • Kim, Mi-Sun;Lee, Ki-Kwang;Kim, Kwantae
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.235-245
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the differences between visual search, eye fixation positions, and eye fixation position on whole body regions while judging final matches of dance sports. Method: Ten experienced judges (male 6, female 4) and six dance sports couples belonging to the top Korean leagues in the Korea Dance sports Federation were participated. Wearable eye trackers were used for data collection. The independent t-test was conducted to examine the effects of gender, and the two-way ANOVA was conducted to examine the effects of judges' gender, dance event, and ranking. Results: It was found that the movement of male contestants was preferred, and the gaze fixation was high for torso movements in the judges' evaluations. Moreover, attention was focused on the upper body rather than the lower body; this was maintained for about seven seconds to evaluate each couple. Conclusion: This find was the relative comparison between the two couples was the determining factor in winning or losing.

Determination of Local Vortical in Celestial Navigation Systems (천측 항법 시스템의 수직 방향 결정)

  • Suk, Byong-Suk;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.72-78
    • /
    • 2007
  • Determination of the local vertical is not trivial for a moving vehicle and in general will require corrections for the Earth geophysical deflection. The vehicle's local vertical can be estimated by INS integration with initial alignment in SDINS(Strap Down INS) system. In general, the INS has drift error and it cause the performance degradation. In order to compensate the drift error, GPS/INS augmented system is widely used. And in the event that GPS is denied or unavailable, celestial navigation using star tracker can be a backup navigation system especially for the military purpose. In this celestial navigation system, the vehicle's position determination can be achieved using more than two star trackers, and the accuracy of position highly depends on accuracy of local vertical direction. Modern tilt sensors or accelerometers are sensitive to the direction of gravity to arc second(or better) precision. The local gravity provides the direction orthogonal to the geoid and, appropriately corrected, toward the center of the Earth. In this paper the relationship between direction of center of the Earth and actual gravity direction caused by geophysical deflection was analyzed by using precision orbit simulation program embedded the JGM-3 geoid model. And the result was verified and evaluated with mathematical gravity vector model derived from gravitational potential of the Earth. And also for application purpose, the performance variation of pure INS navigation system was analyzed by applying precise gravity model.

Extended kernel correlation filter for abrupt motion tracking

  • Zhang, Huanlong;Zhang, Jianwei;Wu, Qinge;Qian, Xiaoliang;Zhou, Tong;FU, Hengcheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4438-4460
    • /
    • 2017
  • The Kernelized Correlation Filters (KCF) tracker has caused the extensive concern in recent years because of the high efficiency. Numerous improvements have been made successively. However, due to the abrupt motion between the consecutive image frames, these methods cannot track object well. To cope with the problem, we propose an extended KCF tracker based on swarm intelligence method. Unlike existing KCF-based trackers, we firstly introduce a swarm-based sampling method to KCF tracker and design a unified framework to track smooth or abrupt motion simultaneously. Secondly, we propose a global motion estimation method, where the exploration factor is constructed to search the whole state space so as to adapt abrupt motion. Finally, we give an adaptive threshold in light of confidence map, which ensures the accuracy of the motion estimation strategy. Extensive experimental results in both quantitative and qualitative measures demonstrate the effectiveness of our proposed method in tracking abrupt motion.