• Title/Summary/Keyword: Tracked Mobile Robot

Search Result 29, Processing Time 0.381 seconds

Emergency Situation Detection using Images from Surveillance Camera and Mobile Robot Tracking System (감시카메라 영상기반 응급상황 탐지 및 이동로봇 추적 시스템)

  • Han, Tae-Woo;Seo, Yong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.101-107
    • /
    • 2009
  • In this paper, we describe a method of detecting emergency situation using images from surveillance cameras and propose a mobile robot tracking system for detailed examination of that situation. We are able to track a few persons and recognize their actions by an analyzing image sequences acquired from a fixed camera on all sides of buildings. When emergency situation is detected, a mobile robot moves and closely examines the place where the emergency is occurred. In order to recognize actions of a few persons using a sequence of images from surveillance cameras images, we need to track and manage a list of the regions which are regarded as human appearances. Interest regions are segmented from the background using MOG(Mixture of Gaussian) model and continuously tracked using appearance model in a single image. Then we construct a MHI(Motion History Image) for a tracked person using silhouette information of region blobs and model actions. Emergency situation is finally detected by applying these information to neural network. And we also implement mobile robot tracking technology using the distance between the person and a mobile robot.

  • PDF

A vision based people tracking and following for mobile robots using CAMSHIFT and KLT feature tracker (캠시프트와 KLT특징 추적 알고리즘을 융합한 모바일 로봇의 영상기반 사람추적 및 추종)

  • Lee, S.J.;Won, Mooncheol
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.787-796
    • /
    • 2014
  • Many mobile robot navigation methods utilize laser scanners, ultrasonic sensors, vision camera, and so on for detecting obstacles and path following. However, human utilizes only vision(e.g. eye) information for navigation. In this paper, we study a mobile robot control method based on only the camera vision. The Gaussian Mixture Model and a shadow removal technology are used to divide the foreground and the background from the camera image. The mobile robot uses a combined CAMSHIFT and KLT feature tracker algorithms based on the information of the foreground to follow a person. The algorithm is verified by experiments where a person is tracked and followed by a robot in a hallway.

Optimal path planning for the capturing of a moving object

  • Kang, Jin-Gu;Lee, Sang-Hun;Hwang, Cheol-Ho;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1419-1423
    • /
    • 2004
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

Optimal path planning for the capturing of a moving object

  • Hwang, Cheol-Ho;Lee, Sang-Hun;Ko, Jae-Pyung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.186-190
    • /
    • 2003
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

Planning of Safe and Efficient Local Path based on Path Prediction Using a RGB-D Sensor (RGB-D센서 기반의 경로 예측을 적용한 안전하고 효율적인 지역경로 계획)

  • Moon, Ji-Young;Chae, Hee-Won;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.121-128
    • /
    • 2018
  • Obstacle avoidance is one of the most important parts of autonomous mobile robot. In this study, we proposed safe and efficient local path planning of robot for obstacle avoidance. The proposed method detects and tracks obstacles using the 3D depth information of an RGB-D sensor for path prediction. Based on the tracked information of obstacles, the paths of the obstacles are predicted with probability circle-based spatial search (PCSS) method and Gaussian modeling is performed to reduce uncertainty and to create the cost function of caution. The possibility of collision with the robot is considered through the predicted path of the obstacles, and a local path is generated. This enables safe and efficient navigation of the robot. The results in various experiments show that the proposed method enables robots to navigate safely and effectively.

Parameters for Min. Time and Optimal Control of Four-Legged Mobile Robot (4-족 이동로보트의 최소시간 최적제어를 위한 파라메터 연구)

  • 박성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.490-496
    • /
    • 1995
  • A four-legged mobile robot can move on the plain terrain with mobility and stability, but if there exist any obstacles on the terrain of the motion direction, it takes extra times for a mobile robot to cross those obstacles and the stability should be considered during motion. The main objevtive is the study of a quadruped which can cross obstacles with better mobility, stability and fuel economy than any other wheeled or tracked vehicles. Vertical step, isolated wall and ditch are the basic obstacles and by understanding those three cases perfectly, a quadruped can move on any mixed rough terrain as 4-legged animal moves. Each leg of a determine the crossing capability in a static analysis. A quadruped can be simplified with links and joints. By applying the research method, a quadruped can determine the control procedures as soon as it receives the terrain informations from scanner and finally can be moved as animals move with mobility and stability.

  • PDF

Wheel &Track Hybrid Mobile Robot Platform and Mechanism for Optimal Navigation in Urban Terrain (도심지형 최적주행을 위한 휠.무한궤도 하이브리드형 모바일 로봇 플랫폼 및 메커니즘)

  • Kim, Yoon-Gu;Kim, Jin-Wook;Kwak, Jeong-Hwan;Hong, Dae-Han;Lee, Ki-Dong;An, Jin-Ung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2010
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for the purpose of surveillance, reconnaissance, search and rescue, and etc. We have considered a terrain adaptive hybrid robot platform which is equipped with rapid navigation on flat floors and good performance on overcoming stairs or obstacles. Since our special consideration is posed to its flexibility for real application, we devised a design of a transformable robot structure which consists of an ordinary wheeled structure to navigate fast on flat floor and a variable tracked structure to climb stairs effectively. Especially, track arms installed in front side, rear side, and mid side are used for navigation mode transition between flatland navigation and stairs climbing. The mode transition is determined and implemented by adaptive driving mode control of mobile robot. The wheel and track hybrid mobile platform apparatus applied off-road driving mechanism for various professional service robots is verified through experiments for navigation performance in real and test-bed environment.

UTV localization from fusion of Dead -reckoning and LBL System

  • Woon, Jeon-Sang;Jung Sul;Cheol, Won-Moon;Hong Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.64.4-64
    • /
    • 2001
  • Localization is the key role in controlling the Mobile Robot. In this papers, a development of the sensor fusion algorithm for controling UTV(Unmanned Tracked Vehicle) is presented. The multi-sensocial dead-rocking subsystem is established based on the optimal filtering by first fusing heading angle reading from a magnetic compass, a rate-gyro and two encoders mouned on the robot wheels, thereby computing the deat-reckoned location. These data and the position data provoded by LBL system are fused together by means of an extended Kalman filter. This algorithm is proved by simulation studies.

  • PDF

Experimental Verification of Obstacle Avoidance Algorithm ELA Applicable to Rescue Robots (구조로봇에 적합한 장애물 회피 알고리즘 ELA의 실험적 검증)

  • Jeong, Hae-Kwan;Hyun, Kyung-Hak;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.105-111
    • /
    • 2009
  • In this paper, we provide experimental results and verification for obstacle avoidance algorithm 'ELA(Emergency Level Around)', which is applicable to rescue robots. ELA is a low level intelligence-based obstacle avoidance algorithm, so can be used in fast mobile robots requiringhigh speed in operation with little computational load. Constructed system for experiments consist of laptop, sensors, peripheral devices and mobile robot platform VSTR(Variable Single-tracked Robot) to realize predetermined scenarios. Finally, experiment was conducted in indoor surroundings including miscellaneous things as well as dark environment to show fitness and robustness of ELA for rescue, and it is shown that VSTR navigates endowed area well with real-time obstacle avoidance based on ELA. Therefore, it is concluded that ELA can be a candidate algorithm to increase mobility of rescue robots in real situation.

  • PDF