• 제목/요약/키워드: Track-bridge interactions

검색결과 9건 처리시간 0.028초

슬래브궤도가 부설된 고속철도 교량단부 체결장치의 거동 (Behavior of Fastening system of HSR bridge ends deck on Slab Track installed Bridge)

  • 천대성;최정열;안해영;박용걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1637-1646
    • /
    • 2008
  • Deformations of bridge deck ends on abutment can cause extreme deformations on track. Especially, since slab track was fixed onto the bridge deck slab on concrete slab track installed bridges, deformations of bridge deck ends directly affect the slab track behavior, and thus these interactions can bring about the premature failure of rail fastenings or other deteriorations to lower the serviceability. In this study, a foreign standard to evaluate forces on track components caused by the track-bridge interactions and the behavior of bridge deck ends was investigated and for real scale bridges. It was found that rail support spring coefficients, as well as toe loads, support spacing were very important parameters.

  • PDF

궤도-교량 상호작용을 고려한 콘크리트 슬래브궤도 부설 교량의 단부 사용성 검토 (Investigation of serviceability of bridge deck ends on concrete slab track-installed bridges considering track-bridge interaction)

  • 장승엽;양신추;김종태
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1875-1881
    • /
    • 2007
  • Deformations of bridge deck ends on abutments or on transition between bridge decks can cause extreme deformations on track. Especially, since slab track is fixed onto the bridge deck slab on concrete slab track-installed bridges, deformations of bridge deck ends directly affect the track behavior, and thus these interactions can bring about the premature failure of rail fastenings or other deteriorations to lower the serviceability. In this study, a foreign standard to evaluate forces on track components caused by the track-bridge interactions and the serviceability of bridge deck ends is investigated, and for the real bridges, the serviceability of bridge deck ends according to several parameters of bridge and track is analyzed. It is found that arrangements and spring coefficients of bridge bearings, as well as distance between bridge bearing and last rail support, support spacings, rail support spring coefficient, are very important parameters.

  • PDF

2차원 관절형 고속열차 모델을 이용한 차량/궤도/교량 상호작용해석 (Train/Track/Bridge Interaction Analysis Using 2-Dimensional Articulated High-Speed Train Model)

  • 김만철;양신추;이종득
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.414-421
    • /
    • 1999
  • In this paper, the simplified method for 2-dimensional train/track/bridge interaction analysis is utilized in the analysis of dynamic behavior of bridges in which the eccentricity of axle loads and the effect of the toriosnal forces acting on the bridge are included for the more accurate train/track/bridge interaction analysis. Inverstigations mainly into the influence of vehicle speed on train/track/bridge interactions are carried out for the two cases. The first case is that only train and bridge are considered in the modelling and the other case is that train, track and bridge are considered.

  • PDF

Analysis of high-speed vehicle-bridge interactions by a simplified 3-D model

  • Song, Myung-Kwan;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제13권5호
    • /
    • pp.505-532
    • /
    • 2002
  • In this study, the analysis of high-speed vehicle-bridge interactions by a simplified 3-dimensional finite element model is performed. Since railroads are constructed mostly as double tracks, there exists eccentricity between the vehicle axle and the neutral axis of cross section of a railway bridge. Therefore, for the more efficient and accurate vehicle-bridge interaction analysis, the analysis model should include the eccentricity of axle loads and the effect of torsional forces acting on the bridge. The investigation into the influences of eccentricity of the vehicle axle loads and vehicle speed on vehicle-bridge interactions are carried out for two cases. In the first case, only one train moves on its track and in the other case, two trains move respectively on their tracks in the opposite direction. From the analysis results of an existing bridge, the efficiency and capability of the simplified 3-dimensional model for practical application can be also verified.

고속철도 교량의 구조 시스템 변화를 고려한 교량상 장대레일의 응력 해석 (Analysis of Rail Stress on Diversity of Railway Bridge Sustem)

  • 강재윤;김병석;곽종원;진원종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3160-3165
    • /
    • 2011
  • The track and bridge interaction should be considered for the safety check of railway bridge design as the longitudinal forces transmitted to rail and bridge are changed by longitudinal stiffness of bridge system. The longitudinal stiffness of bridge structures is determined by the magnitude of the ballast resistance, the expansion length of superstructure, and longitudinal stiffness of substructure including pier and foundations. In this study, the main factors affect on the longitudinal rail forces are discussed and the computational parametric analysis of rail forces considering rail-bridge interactions. And the required range of stiffness of sub-structures and span length for the assurance of safety of CWR(continuous welded rail) track is suggested.

  • PDF

레일/교량 상호작용을 고려한 레일축력 해석 (Analysis of Rail Force considering Rail/Bridge Interation)

  • 김병석;김영진;강재윤
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.71-78
    • /
    • 1998
  • Recently, continuous welded rail (CWR) track has been adopted for railway track structure of great advantages of reducing maintenance costs, and of increasing life time of track components and the comfort of passengers. But, in this case, a temperature or mechanical load will result in high stress and the track breakage or buckling may occur Especially when the CWR is laying on the bridge structure, the relative displacement of these structure can be increased and this results in the instability of track. In this paper, the main factors affect on the longitudinal rail force are discussed and the computer program is developed for the analysis of rail force considering the interactions with sub-structure.

  • PDF

An analytical solution to the mapping relationship between bridge structures vertical deformation and rail deformation of high-speed railway

  • Feng, Yulin;Jiang, Lizhong;Zhou, Wangbao;Lai, Zhipeng;Chai, Xilin
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.209-224
    • /
    • 2019
  • This paper describes a study of the mapping relationship between the vertical deformation of bridge structures and rail deformation of high-speed railway, taking the interlayer interactions of the bridge subgrade CRTS II ballastless slab track system (HSRBST) into account. The differential equations and natural boundary conditions of the mapping relationship between the vertical deformation of bridge structures and rail deformation were deduced according to the principle of stationary potential energy. Then an analytical model for such relationship was proposed. Both the analytical method proposed in this paper and the finite element numerical method were used to calculate the rail deformations under three typical deformations of bridge structures and the evolution of rail geometry under these circumstances was analyzed. It was shown that numerical and analytical calculation results are well agreed with each other, demonstrating the effectiveness of the analytical model proposed in this paper. The mapping coefficient between bridge structure deformation and rail deformation showed a nonlinear increase with increasing amplitude of the bridge structure deformation. The rail deformation showed an obvious "following feature"; with the increase of bridge span and fastener stiffness, the curve of rail deformation became gentler, the track irregularity wavelength became longer, and the performance of the rail at following the bridge structure deformation was stronger.

Total reference-free displacements for condition assessment of timber railroad bridges using tilt

  • Ozdagli, Ali I.;Gomez, Jose A.;Moreu, Fernando
    • Smart Structures and Systems
    • /
    • 제20권5호
    • /
    • pp.549-562
    • /
    • 2017
  • The US railroad network carries 40% of the nation's total freight. Railroad bridges are the most critical part of the network infrastructure and, therefore, must be properly maintained for the operational safety. Railroad managers inspect bridges by measuring displacements under train crossing events to assess their structural condition and prioritize bridge management and safety decisions accordingly. The displacement of a railroad bridge under train crossings is one parameter of interest to railroad bridge owners, as it quantifies a bridge's ability to perform safely and addresses its serviceability. Railroad bridges with poor track conditions will have amplified displacements under heavy loads due to impacts between the wheels and rail joints. Under these circumstances, vehicle-track-bridge interactions could cause excessive bridge displacements, and hence, unsafe train crossings. If displacements during train crossings could be measured objectively, owners could repair or replace less safe bridges first. However, data on bridge displacements is difficult to collect in the field as a fixed point of reference is required for measurement. Accelerations can be used to estimate dynamic displacements, but to date, the pseudo-static displacements cannot be measured using reference-free sensors. This study proposes a method to estimate total transverse displacements of a railroad bridge under live train loads using acceleration and tilt data at the top of the exterior pile bent of a standard timber trestle, where train derailment due to excessive lateral movement is the main concern. Researchers used real bridge transverse displacement data under train traffic from varying bridge serviceability levels. This study explores the design of a new bridge deck-pier experimental model that simulates the vibrations of railroad bridges under traffic using a shake table for the input of train crossing data collected from the field into a laboratory model of a standard timber railroad pile bent. Reference-free sensors measured both the inclination angle and accelerations of the pile cap. Various readings are used to estimate the total displacements of the bridge using data filtering. The estimated displacements are then compared to the true responses of the model measured with displacement sensors. An average peak error of 10% and a root mean square error average of 5% resulted, concluding that this method can cost-effectively measure the total displacement of railroad bridges without a fixed reference.

초고속 주행시 교량/토공 접속부 보강방안의 설계변수 분석 (Analysis of Design Parameters for Earthwork/Bridge Transition Structure for Ultra-High Speed Running)

  • 이일화;이성진;이수형;이강명
    • 한국철도학회논문집
    • /
    • 제18권2호
    • /
    • pp.117-126
    • /
    • 2015
  • 600km/h급 철도노반 개발은 초고속주행에 의한 동적상호작용의 예측이 어렵기 때문에 기술개발에 애로사항이 많다. 특히 교량/토공 접속부는 동적 상호작용을 포함하여 지지력, 압축, 침하, 배수, 유동 등의 영향 요소가 복합적으로 발생하는 구간으로서 접속부에서의 안정성이 확보된다면 초고속 열차용 토공노반의 안정성도 확보 가능할 것으로 예상된다. 본 논문에서는 초고속철도 접속구조개발의 기초 연구단계로서 국내 고속철도에서 적용하고 있는 접속부의 보강방안을 우선적으로 적용하여 초고속 주행시의 설계변수 영향을 해석적으로 검토하였다. 설계변수는 설계단계에서 검토 가능한 항목인 보강방안의 유무, 기하하적 형상, 재료의 강성 등이며, 분석내용은 초고속주행에 따른 궤도의 변형응답과 주행안정성을 검토하였다.