• 제목/요약/키워드: Track deformation

검색결과 138건 처리시간 0.03초

A theoretical mapping model for bridge deformation and rail geometric irregularity considering interlayer nonlinear stiffness

  • Leixin, Nie;Lizhong, Jiang;Yulin, Feng;Wangbao, Zhou;Xiang, Xiao
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.93-105
    • /
    • 2023
  • This paper examines a high-speed railway CRTS-II ballastless track-bridge system. Using the stationary potential energy theory, the mapping analytical solution between the bridge deformation and the rail vertical geometric irregularity was derived. A theoretical model (TM) considering the nonlinear stiffness of interlayer components was also proposed. By comparing with finite element model results and the measured field data, the accuracy of the TM was verified. Based on the TM, the effect of bridge deformation amplitude, girder end cantilever length, and interlayer nonlinear stiffness (fastener, cement asphalt mortar layer (CA mortar layer), extruded sheet, etc.) on the rail vertical geometric irregularity were analyzed. Results show that the rail vertical deformation extremum increases with increasing bridge deformation amplitude. The girder end cantilever length has a certain influence on the rail vertical geometric irregularity. The fastener and CA mortar layer have basically the same influence on the rail deformation amplitude. The extruded sheet and shear groove influence the rail geometric irregularity significantly, and the influence is basically the same. The influence of the shear rebar and lateral block on the rail vertical geometric irregularity could be negligible.

장대레일궤도의 온도좌굴에 영향을 미치는 매개변수 연구 (Parametric Study on Thermal Buckling of CWR Tracks)

  • 최동호;김호배
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.295-302
    • /
    • 2001
  • The lateral stability of curved continuous welded rail (CWR) is studied fur buckling prevention. This study includes the influences of vehicle induced loads on the thermal buckling behavior of straight and curved CWR tracks. quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deformation induced by wheel loads of vehicle. Parametric numerical analyses are performed to calculate the upper and lower critical buckling temperatures of CWR tracks. The parameters include track lateral resistance, track curvature, longitudinal stiffness, tie-ballast friction coefficient, axle load, truck center spacing, and the ratio of lateral to vertical vehicle load. This study provides a guideline for the improvement or stability for dynamic buckling in on tracks.

  • PDF

이동식 플래시 버트 용접의 효과 (The effect of Mobile Flash Butt Welding)

  • 김준식;이종수;이학규;이중권;이지하
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.793-799
    • /
    • 2004
  • In track a third weakness point is joint part, turnout part, curve part. One of them joint part of rail have been known to the most weak point by loosen of joint bar and fish bolt due to impulse and vibration by wheel contact at times. In addition happen to deformation and failure at end of rail, failure and miniature of ballast gravel. Finally impact between wheel and rail become origin cause of a welded rail, noise and vibration. riding condition deterioration, besides track failure. In the present domestic, Thermite and Gas pressure weldings have been used to continuous welded rail(CWR), however stiffness and confidence in quality is lower than Flash butt welding method. FRW have the excellent capacity, however have a shortcoming large scale of machine and power equipment. Therefore we will introduce Mobile Flash Butt Welder can weld in track.

  • PDF

반복하중에 의한 콘크리트 궤도 노반의 누적 소성 변위 예측 (Prediction of Cumulative Plastic Displacement in the Concrete Track Roadbed Caused by Cyclic Loading)

  • 원상수;이진욱;이성혁;정영훈
    • 한국철도학회논문집
    • /
    • 제17권1호
    • /
    • pp.52-58
    • /
    • 2014
  • 노반 성토체에서 발생하는 소성 변형은 콘크리트 궤도의 안정성과 유지보수에 영향을 미친다. 철도 노반에서의 장기적인 소성 변형은 주로 반복적인 열차 통과로 발생하는 누적된 비탄성적 변형률에 의해 발생한다. 누적 소성 변형의 예측은 궤도의 유지보수와 열차의 안전한 운영을 위해서 중요하다. 본 연구에서는 서로 다른 강화노반 두께를 가진 철도노반에서 발생하는 연직 변위를 계산하였다. 누적 소성 변형률을 계산하기 위한 멱함수의 상수는 삼축 실험과 실대형 재하 실험의 결과로부터 구하였다. 표준 노반 단면에 대한 3차원 유한요소해석 결과로부터 강화노반의 두께를 선정하는 가이드라인을 제시하였다.

지하구조물 변위거동에 따른 콘크리트궤도의 손상영향 분석 (Evaluation on Damage Effect of Concrete Track induced by Underground Structure Displacement Behavior)

  • 최정열
    • 문화기술의 융합
    • /
    • 제10권3호
    • /
    • pp.839-844
    • /
    • 2024
  • 본 연구는 인접굴착공사, 지반열화 및 지하수위의 변화에 따른 지하구조물 변위거동이 궤도 손상에 미치는 영향을 해석적으로 분석하였다. 연구대상인 콘크리트궤도는 침목플로팅궤도(STEDEF)와 사전제작형궤도(B2S)를 대상으로 분석하였다. 침목플로팅궤도는 콘크리트 도상과 침목이 분리된 궤도구조이다. 사전제작형궤도는 프리캐스트 슬래브를 이용하여 레일 및 체결장치를 조립하여 레일의 탄성거동을 유도하는 궤도구조이다. 수치해석을 위해 콘크리트 궤도별로 레일부터 콘크리트 도상까지 모두 3차원 요소로 모델링하였다. 또한 지하구조물 변위거동을 변수로 설정하여 콘크리트 도상의 손상영향을 분석하였다. 수치해석을 이용하여 융기 및 침하에 따른 콘크리트 도상 응력을 분석하였으며, 인장강도 및 전단강도와 비교하여 균열 발생 수준을 분석하였다. 분석결과, 동일한 융기 및 침하발생 시 사전제작형궤도보다 침목플로팅궤도가 취약한 것으로 분석되었다. 또한 최대 융기 및 침하부 기준으로 침목플로팅궤도의 균열발생 영향범위가 큰 것으로 분석되었다.

수치해석적 기법을 활용한 골재 도로의 콜루게이션 발생 및 진전 분석 (Numerical Analysis of the Initiation and Development of Corrugation on a Gravel Road)

  • 윤태영;정태일;신휴성
    • 한국도로학회논문집
    • /
    • 제20권1호
    • /
    • pp.9-18
    • /
    • 2018
  • PURPOSES : In this research, the initiation and development of corrugation on a gravel road with certain wheel and boundary conditions were evaluated using a coupled discrete-element method (DEM) with multibody dynamics (MBD). METHODS : In this study, 665,534 particles with a 4-mm diameter were generated and compacted to build a circular roadbed track, with a depth and width of 42 mm and 50 mm, respectively. A single wheel with a 100-mm diameter, 40-mm width, and 0.157-kg mass was considered for the track. The single wheel was set to run slowly on the track with a speed of 2.5 rad/s so that the corrugation was gradually initiated and developed without losing contact between the wheel and the roadbed. Then, the shape of the track surface was monitored, and the movement of the particles in the roadbed was tracked at certain wheel-pass numbers to evaluate the overall corrugation initiation and development mechanism. RESULTS : Two types of corrugation, long wave-length and short wave-length, were observed in the circular track. It seems that the long wave-length corrugation was developed by the longitudinal movement of surface particles in the entire track, while the short wave-length corrugation was developed by shear deformation in a local section. Properties such as particle coefficients, track bulk density, and wheel mass, have significant effects on the initiation and development of long-wave corrugation. CONCLUSIONS : It was concluded that the coupled numerical method applied in this research could be effectively used to simulate the corrugation of a gravel road and to understand the mechanism that initiates and develops corrugation. To derive a comprehensive conclusion for the corrugation development under various conditions, the driver's acceleration and deceleration with various particle gradations and wheel-configuration models should be considered in the simulation.

교량상 slab궤도의 상향력 민감도분석 (Parameteric Analysis for Up-lifting force on Slab track of Bridge)

  • 최성기;박대근;한상윤;강영종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1188-1195
    • /
    • 2007
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads, the settlement of supports, and the temperature gradients. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of various load cases, such as the end rotation of the overhang due to the vertical load, the bending of pier due to acceleration/braking force and temperature deviation, the settlement of embankment and pier, the temperature deviation of up-down deck and front-back pier, and the rail deformation due to wheel loads. The analysis of the rail fastener is made to verify the superposed tension forces in the rail fastener due to various load cases, temperature gradients and settlement of supports. The potential critical fasteners with the highest uplift forces are the fastener adjacent to the civil joint. The main influence factors are the geometry of the bridge such as, the beneath length of overhang, relative position of bridge bearing and fastener, deflection of bridge and the vertical spring stiffness of the fastener.

  • PDF

강성특성치를 이용한 고속전철 콘크리트궤도의 처짐가능성 평가 (Evaluation of Concrete-Track Deformation for High-Speed Railways by Characteristic Stiffness)

  • 조성호;이일화;황선근;강태호;김석철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.641-646
    • /
    • 2009
  • Concrete tracks are superior to ballast tracks in the aspect of durability, maintenance and safety. However, deteriorated stiffness of railroad bed and settlement of soft ground induced by trapped or seepage water lead to problems in safety of train operation. In this research, characteristic stiffness of concrete tracks, which is determined from FRACTAL (Flexural-Rigidity Assessment of Concrete Tracks by Antisymmetric Lamb Waves) technique, was employed as an index of track displacement. The characteristic stiffness is defined using Poisson's ratio, moment of inertia and stiffness ratio of subgrade to slab. To verify validity and reliability of the proposed characteristic stiffness, experimental and theoretical researches were performed. Feasibility of the characteristic stiffness based on FRACTAL technique was proved at a real concrete track for Korean high-speed trains. Validity of the FRACTAL technique was also verified by comparing the results of impulse-response tests performed at the same measurement array and the results of SASW tests and DC resistivity survey performed at a shoulder nearby the track.

  • PDF

경부고속철도 토공부에 대한 변형상태 계측 및 분석 (Measurements and Analysis of Deformation States in Roadbed in Gyeongbu High Speed Railway)

  • 진남희;김남혁;심현우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1542-1549
    • /
    • 2009
  • The function of subgrade in the railway is to support track load on the subgrade as well as train load. Unlike the traditional railway, the uppermost subgrade layer in the Gyeongbu high speed railway was constructed as the reinforced road bed. The reinforced road bed comprises sub-ballast in the upper part and grade ballast in the lower part. The filling material such as soil and rocks in the subgrade can be settled by consolidation of original ground, compression due to self weight, plastic displacement due to train operation, and unequal settlement due to embankment material or improper compaction, therefore many efforts have been given for sufficient compaction and use of proper filling materials in the construction stage. The purpose of this study is to investigate the deformation state of subgrade in the Gyeongbu high speed railway. The investigation on the subgrade settlement was performed by choosing representative sections suspected to be settled based on the previous GPR test results and track maintenance history, measuring the settlement for some time period after installing settlement measuring instruments on and under the reinforced road bed. and analyzing the long-term subgrade settlement data from monitoring system which was installed at the construction stage of the high speed railway.

  • PDF

Unscented Kalman Snake for 3D Vessel Tracking

  • Lee, Sang-Hoon;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • 제2권1호
    • /
    • pp.17-25
    • /
    • 2015
  • Purpose In this paper, we propose a robust 3D vessel tracking algorithm by utilizing an active contour model and unscented Kalman filter which are the two representative algorithms on segmentation and tracking. Materials and Methods The proposed algorithm firstly accepts user input to produce an initial estimate of vessel boundary segmentation. On each Computed Tomography Angiography (CTA) slice, the active contour is applied to segment the vessel boundary. After that, the estimation process of the unscented Kalman filter is applied to track the vessel boundary of the current slice to estimate the inter-slice vessel position translation and shape deformation. Finally both active contour and unscented Kalman filter are inter-operated for vessel segmentation of the next slice. Results The arbitrarily shaped blood vessel boundary on each slice is segmented by using the active contour model, and the Kalman filter is employed to track the translation and shape deformation between CTA slices. The proposed algorithm is applied to the 3D visualization of chest CTA images using graphics hardware. Conclusion Through this algorithm, more opportunities, giving quick and brief diagnosis, could be provided for the radiologist before detailed diagnosis using 2D CTA slices, Also, for the surgeon, the algorithm could be used for surgical planning, simulation, navigation and rehearsal, and is expected to be applied to highly valuable applications for more accurate 3D vessel tracking and rendering.