• Title/Summary/Keyword: Track Vehicle

Search Result 699, Processing Time 0.026 seconds

Wheelset Steering Control for Improvement a Running Safety on Curved Track (곡선부 주행안전성 향상을 위한 윤축 조향 제어)

  • Hur, Hyun Moo;Ahn, Da Hoon;Kim, Nam Po;Sim, Kyung Seok;Park, Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.759-764
    • /
    • 2014
  • Lateral force of wheel is important parameter when we evaluate the safety of a railway vehicle on curved track. The lateral force of wheel is influenced by the steering performance of wheelsets. Generally, in passive type vehicles, the steering performance of wheelsets is influenced by the parameters like primary spring stiffness, wheel base, conicity of the wheel profile, etc. But, the steering performance of passive type vehicle has its limit. To overcome the limit of the steering performance of passive type vehicle, active steering technology is being developed. In this paper, we analyze the lateral force of wheel and the safety of the railway vehicle on curved track by adopting the active steering technology. As results of dynamic analysis for vehicle model equipped with active steering system, the lateral force of wheel is reduced and the safety is improved remarkably.

Running Safety Analysis of Railway Vehicle depending on Rail Inclination Change on Actual Track of Subway Line No.3 in Seoul (3호선 실제선로 조건에서의 레일경좌 변화에 따른 철도차량 주행안전성 해석)

  • Kim, Tae Geon;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.130-135
    • /
    • 2016
  • It is very hard to analyze the train derailment safety quantitatively at the curved section because of the diversified affect parameters including the complex interaction between wheel and rail, the train conditions such as the shape of wheel, suspension system, the track conditions such as the radius of curve, cant, transition curve, and the operation conditions, etc. Two major factors related to the running safety of railway vehicle are classified as the railway vehicle and the track condition. In this study, when the railway vehicle passing through curves of actual track condition of subway line NO.3 in seoul ($Yeonsinnae{\leftrightarrow}Gupabal$), the effect that has influence on running safety depending on rail inclination. The analysis result of 1/40 rail inclination condition is more favorable on running safety than other rail inclination conditions because derailment coefficient and wheel unloading ratio are the lowest.

Effects of Vehicle Loads on Thermal Buckling Behavior of Continuous Welded Rail Tracks (장대레일 궤도의 온도좌굴 거동에 미치는 열차하중의 영향)

  • Choi, Dong Ho;Kim, Ho Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.727-736
    • /
    • 2000
  • The present study investigates the influences of vehicle induced loads on the thermal buckling behavior of straight and curved continuous welded rail (CWR) tracks. Quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deflection induced by wheel loads of vehicle. The lateral loads of vehicle induced by weight, the speed, the superelevation and curvature of track, and other dynamic vehicle track interaction, are included in the ratio of lateral to vertical vehicle load. Parametric numerical analyses are perfomed to calculate the upper and lower critical buckling temperatures of CWR tracks, and the comparison between the results of this work and the previous results without vehicle is also included.

  • PDF

Simulation Tool Development for Dynamic Tracked Tensioning System in Tracked Vehicles (궤도차량의 동적 궤도장력 조절시스템을 위한 시뮬레이션 툴 구축)

  • 김일민;김민철;임훈기;허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.76-81
    • /
    • 2002
  • The characteristics of the track are important concerning the mobility of tracked vehicles. It can be represented in terms of the track tension and maintaining the track tension adequately guarantees the stable and improved driving of the tracked vehicles. The track tension must be known in order to be controlled and it needs to be estimated in real-time because it is difficult to be measured. The tension around idler and sprocket can be controlled by the frizzy logic control system base on the estimated values. Dynamic Track Tensioning System(DTTS) which is estimating and controlling the track tension. In this paper, simulation tool is developed in order to apply the DTTS to real battle tanks. To construct the simulation tool, the Modeling the tracked vehicle, constructing estimation system, and designing controller should be achieved first and then all subsystem should be organized in one. The simulation tool make the RecurDyn model of tracked vehicle, which is plant model, and the control system exchange their data simultaneously. Simulation with many kinds of driving conditions and road conditions is carried out and the results are interpreted. The interpretation provides necessary information to apply the DTTS to real battle tanks.

  • PDF

Dynamic Anlaysis of High Mobility Tracked Vehicles (고속주행용 궤도차량의 동적해석)

  • 김상두;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.205-215
    • /
    • 2001
  • In this study, modeling and analysis procedure for the dynamic analysis of a high mobility tracked vehicle system were studied. The vehicle model used in this investigation is assumed to be consist of two kinematically decoupled subsystems. The chassis subsystem consists of chassis frame, sprocket, support rollers, road wheels, idler wheel, road wheel arms and idle wheel arm, while the track subsystem is represented as a closed kinematic chain consisting of track links and end connectors interconnected by revolute joints with bushing. Nonlinear contact force module describing the interaction between track link, and sprocket, idler wheel, road wheel, support roller, ground was used. The effects of road wheel arms and idler wheel arm due to tension adjuster are also considered.

  • PDF

Development of a Neural-Fuzzy Control Algorithm for Dynamic Control of a Track Vehicle (궤도차량의 동적 제어를 위한 퍼지-뉴런 제어 알고리즘 개발)

  • 서운학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.142-147
    • /
    • 1999
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

What are measures to reduce interior noise for KTX in tunnel with concrete track? (콘크리트 궤도 터널 주행 시 KTX차량의 실내소음 저감방안은 무엇인가?)

  • Kim J.C.;Koh H.I.;Lee C.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.29-30
    • /
    • 2006
  • The interior noise of KTX in tunnel has become an issue since the commercial operating in April 2004. The analysis of the interior noise of KTX in tunnel with concrete track shows sharply increased noise level in the range of 80Hz that is the natural frequency of the KTX carbody. We know that the booming noise inside KTX in tunnel with concrete track is generated by noise outside gangway and rolling noise at the carbody natural frequency. In this Study noise reduction methods are discussed on the basis of the comparison of the KTX and KHST noise characteristics. Alternatively, the effect of the modified mud-flap on the interior noise is introduced.

  • PDF

Method for Distributed Routing of a Personal Rapid Transit Vehicle using In-Track process (In-Track 방식 PRT 차량의 분산식 경로 제어 방법)

  • Jang, Young-Hwan;Kim, Mal-Soo;Ryou, Myung-Seon;Kim, Jae-Sik;Choi, Seung-Gab
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.2023-2029
    • /
    • 2009
  • The PRT can be divided into In-Track and On-Board according to propulsion method. In process of In-Track, vehicles driven by LIMs(Linear Induction Motor) which are installed in Guideway. Central Controller, which control whole machine, must control speed and direction of all vehicles. In this case, as vehicle increases, Central Controller will overload. If Central Controller fails, all vehicle stops. To avoid this problem, processing of Central Controller must be distributed. This paper introduces method of Distributed Routing. Method of Distributed Routing will provide safety and efficiency for PRT System.

  • PDF

Track Irregularity Inspection Method for Commercial Vehicle (영업차량에서의 궤도비틀림 검측 방안 연구)

  • Lee Chan-Woo;Choi Eun-Young
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.768-773
    • /
    • 2003
  • The inspection of track irregularity, which is the most important index for the evaluation of the dynamic safety of the rolling stock, is performed by setting up the testing train set. The self-diagnosis for the various rolling stocks and railways can be obtained if it is possible to take the simultaneous inspection of track irregularity for the commercial vehicle while it is running and to build up a dynamic safety evaluation system. It is expected to have some good effects, such as preventing accident with the low dynamic safety, cutting cost for the testing train set and evaluating the exact influence on the rolling stock and railway. In this study, innertial measuring method, which allows us to directly measure the track irregularity from the commercial vehicle, will be considered and some overseas cases will be explored as well.

  • PDF

The Displacement Limit at the End of an Approach Slab for a Railway Bridge with Ballastless Track (콘크리트궤도 부설 교량의 접속슬래브 단부 처짐한도에 관한 연구)

  • Choi, Jin-Yu;Yang, Shin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.195-202
    • /
    • 2008
  • The transition area between a bridge and an earthwork is one of the weakest area of track because of the track geometry deterioration caused unequal settlement of backfill of abutment. In case of a ballastless track, the approach slab could be installed to prevent such a phenomenon. But, if there is occurred the inclined displacement on the approach slab by a settlement of the foundation or formation, the track is also under the inclined displacement. And this defect causes reducing the running stability of a vehicle, the riding comfort of passengers, and increasing the track deteriorations by excessive impact force acting on the track. In this study, parametric studies were performed to investigate the displacement limit on the approach slab to avoid such problems. The length and the amount of unequal settlement of approach slab were adopted as parameter for numerical analysis considering vehicle-track interaction. Car body accelerations, variations of wheel force, stresses in rail, and uplift forces induced on fastener clip were investigated. From the result, resonable settlement limit on the end of an approach slab according to slab length was suggested.