• Title/Summary/Keyword: Toxin gene

Search Result 223, Processing Time 0.027 seconds

Cloning and expression of human $\beta$$_2$-adrenergic receptor in Saccharomyces cerevisiae

  • 장원진;안진현;고광호;강현삼
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.295-295
    • /
    • 1994
  • The human ${\beta}$$_2$-adrenergic receptor (h${\beta}$$_2$AR) contains seven clusters of hydrophobic amino acids suggestive of membrane-spanning domains and its gene is intronless. The genomic gene encoding h${\beta}$$_2$AR has been isolated by polymerase chain reaction. To express h${\beta}$$_2$AR in Saccharomyces cerevisiae, a modified h${\beta}$$_2$AR gene was fused to signal peptide sequence of Killer toxin gene from Kluyveromyces lactics. This fusion gene was expressed under the galactose-inducible GAL10 promoter. The ligand binding experiments showed that the functional h${\beta}$$_2$AR was expressed at a concentration three times as much as that found in Hamster lung.

  • PDF

Susceptibility of Anthonomus grandis (Cotton Boll Weevil) and Spodoptera frugiperda (Fall Armyworm) to a Cry1Ia-type Toxin from a Brazilian Bacillus thuringiensis Strain

  • Grossi-De-Sa, Maria Fatima;De Magalhaes, Mariana Quezado;Silva, Marilia Santos;Silva, Shirley Margareth.Buffon;Dias, Simoni Campos;Nakasu, Erich Yukio Tempel;Brunetta, Patricia Sanglard Felipe;Oliveira, Gustavo Ramos;De Oliveira Neto, Osmundo Brilhante;De Oliveira, Raquel Sampaio;Soares, Luis Henrique Barros;Ayub, Marco Antonio Zachia;Siqueira, Herbert Alvaro Abreu;Figueira, Edson L.Z.
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.773-782
    • /
    • 2007
  • Different isolates of the soil bacterium Bacillus thuringiensis produce multiple crystal (Cry) proteins toxic to a variety of insects, nematodes and protozoans. These insecticidal Cry toxins are known to be active against specific insect orders, being harmless to mammals, birds, amphibians, and reptiles. Due to these characteristics, genes encoding several Cry toxins have been engineered in order to be expressed by a variety of crop plants to control insectpests. The cotton boll weevil, Anthonomus grandis, and the fall armyworm, Spodoptera frugiperda, are the major economically devastating pests of cotton crop in Brazil, causing severe losses, mainly due to their endophytic habit, which results in damages to the cotton boll and floral bud structures. A cry1Ia-type gene, designated cry1Ia12, was isolated and cloned from the Bt S811 strain. Nucleotide sequencing of the cry1Ia12 gene revealed an open reading frame of 2160 bp, encoding a protein of 719 amino acid residues in length, with a predicted molecular mass of 81 kDa. The amino acid sequence of Cry1Ia12 is 99% identical to the known Cry1Ia proteins and differs from them only in one or two amino acid residues positioned along the three domains involved in the insecticidal activity of the toxin. The recombinant Cry1Ia12 protein, corresponding to the cry1Ia12 gene expressed in Escherichia coli cells, showed moderate toxicity towards first instar larvae of both cotton boll weevil and fall armyworm. The highest concentration of the recombinant Cry1Ia12 tested to achieve the maximum toxicities against cotton boll weevil larvae and fall armyworm larvae were 230 ${\mu}g/mL$ and 5 ${\mu}g/mL$, respectively. The herein demonstrated insecticidal activity of the recombinant Cry1Ia12 toxin against cotton boll weevil and fall armyworm larvae opens promising perspectives for the genetic engineering of cotton crop resistant to both these devastating pests in Brazil.

Antibiotic Resistance and Virulence Potentials of Shiga Toxin-Producing Escherichia coli Isolates from Raw Meats of Slaughterhouses and Retail Markets in Korea

  • Park, Hyun-jung;Yoon, Jang Won;Heo, Eun-Jeong;Ko, Eun-Kyoung;Kim, Ki-Yeon;Kim, Young-Jo;Yoon, Hyang-Jin;Wee, Sung-Hwan;Park, Yong Ho;Moon, Jin San
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1460-1466
    • /
    • 2015
  • In this study, the prevalence of Shiga toxin-producing Escherichia coli (STEC) was investigated among raw meat or meat products from slaughterhouses and retail markets in South Korea, and their potential for antibiotic resistance and virulence was further analyzed. A total of 912 raw meats, including beef, pork, and chicken, were collected from 2008 to 2009. E. coli strains were frequently isolated in chicken meats (176/233, 75.9%), beef (102/217, 42.3%), and pork (109/235, 39.2%). Putative STEC isolates were further categorized, based on the presence or absence of the Shiga toxin (stx) genes, followed by standard O-serotyping. Polymerase chain reaction assays were used to detect the previously defined virulence genes in STEC, including Shiga toxins 1 and Shiga toxin 2 (stx1 and 2), enterohemolysin (ehxA), intimin (eaeA), STEC autoagglutination adhesion (saa), and subtilase cytotoxin (subAB). All carried both stx1 and eae genes, but none of them had the stx2, saa, or subAB genes. Six (50.0%) STEC isolates possessed the ehxA gene, which is known to be encoded by the 60-megadalton virulence plasmid. Our antibiogram profiling demonstrated that some STEC strains, particularly pork and chicken isolates, displayed a multiple drug-resistance phenotype. RPLA analysis revealed that all the stx1-positive STEC isolates produced Stx1 only at the undetectable level. Altogether, these results imply that the locus of enterocyte and effacement (LEE)-positive strains STEC are predominant among raw meats or meat products from slaughterhouses or retail markets in Korea.

A Multiplex PCR Assay for the Detection and Differentiation of Enterotoxin-producing and Emetic Toxin-producing Bacillus cereus Strains

  • Lee, Dae-Sung;Kim, Keun-Sung;Kwon, Ki-Sung;Hong, Kwang-Won
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.761-765
    • /
    • 2008
  • Bacillus cereus causes two different types of food poisoning syndromes: diarrhea and emesis. The diarrheal syndrome is attributed to various enterotoxins, including nonhemolytic enterotoxin, hemolytic enterotoxin, and enterotoxin-T, whereas the emetic syndrome is caused by the dodecadepsipeptide toxin cereulide. A multiplex polymerase chain reaction (PCR) assay was developed to rapidly detect and identify B. cereus strains. Three primer pairs specific to regions within genes encoding nonhemolytic enterotoxin (nheA), molecular chaperonin (groEL), and cereulide synthetase (ces) were used to identify and differentiate between the enterotoxin-producing and emetic toxin-producing B. cereus strains. The cereulide-producing emetic B. cereus showed 3 PCR products of 325, 405, and 685 bp for the groEL, ces, and nheA genes, respectively, whereas the enterotoxin-producing B. cereus showed 2 PCR products without a ces gene specific DNA fragment. Specific amplifications and differentiations by multiplex PCR assay were obtained using 62 B. cereus strains and 13 strains' of other bacterial species. The detection limit of this assay for enterotoxin-producing strain and emetic toxin-producing strain from pure cultures were $2.4{\times}10^1$ and $6.0{\times}10^2\;CFU/tube$, respectively. These results suggest that our multiplex PCR method may be useful for the rapid detection and differentiation of B. cereus strains in foods.

Expression and Characterization of Uropathogenic Escherichia coli Adhesin Protein Linked to Cholera Toxin A2B Subunits in Escherichia coli TB1

  • Lee, Yong-Hwa;Ryu, Dong-Kyun;Kim, Byung-Oh;Pyo, Suhk-Neung
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.552-559
    • /
    • 2003
  • The FimH subunit of type 1-fimbriated Escherichiu coli (E. coli) has been determined as a major cause for urinary tract infections. Thus, to produce a possible vaccine antigen against urinary tract infections, the fimIH gene was genetically coupled to the ctxa2b gene and cloned into a pMAL-p2E expression vector. The chimeric construction of pMALfimH/ctxa2b was then transformed into E. coli K-12 TB1 and its nucleotide sequence was verified. A fusion protein, based on fusing adhesin to the cholera toxin subunit A2B (CTXA2B), was induced with 0.01 mM isopropyl-${\beta}-D-thiogalactoside$ (IPTG) for 4 h at $37^{\circ}C$ to yield a soluble fusion protein. The fusion protein was then purified by affinity chromatography. The expressed fusion protein was confirmed by SDS-PAGE and Western blotting using antibodies to the maltose binding protein (MBP) or the cholera toxin subunit B (CTXB), plus the N-terminal amino acid sequence was also analyzed. The orderly-assembled fusion protein was confirmed by a modified $G_{Ml}-ganglioside$ ELISA, using antibodies to adhesin. The results indicated that the purified fusion protein was an adhesin/CTXA2B protein containing E. coli adhesin and the $G_{Ml}-ganglioside$ binding activity of CTXB. Accordingly, this adhesin/CTXA2B protein may be a potential antigen for oral immunization against uropathogenic E. coli.

Expression and Characterization of Helicobacter pylori Adhesin Protein Linked to Cholera Toxin A2/B Subunits in Escherichia coli

  • Kim, Byung-Oh;Shin, Sung-Seup;Yoo, Young-Hyo;Pyo, Shuk-Neung
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.56-62
    • /
    • 2000
  • The hpa gene genetically linked to the ctxa2b gene was cloned into the pTED expression vector, and the constructed pTEDhpa/ctxa2b was transformed into Excherichia coli. The fusion protein, the adhesin fused to the cholera toxin subunit A2B (CTXA2B) subunit, was expressed to high levels as inclusion bodies in E. coli. The expressed protein was partially purified by washing the inclusion bodies with working solution containing 8M Urea and 0.1M DTT. Refolding of denatured fusion protein was carried out in the presence of glutathione redox buffer. The refolded fusion protein was purified by size exclusion chromatography. The expressed fusion protein was verified by SDS-PAGE, western blotting with antibodies to both antigenic components of adhesin and cholera toxin subunit B (CTXB), and its N-terminal amino acid sequence was analyzed. The orderly assembled fusion protein was confirmed by modified Gm1-ganglioside ELISA with Abs to adhesin. The results indicate that the purified fusion protein is an Adhesin/CTXA2B protein containing the H. pylori adhesin and $G_{m1}4-ganglioside binding activity of CTXB and the expressed fusion protein in E. coli could be easily purified by the refolding process, Its molecular weight was 168kDa as estimated by size exclusion chromatography. The Adhesin/CTXA2B protein may be used as a candidate antigen for oral immunization against H. pylori.

  • PDF

Cholera Toxin Production Induced upon Anaerobic Respiration is Suppressed by Glucose Fermentation in Vibrio cholerae

  • Oh, Young Taek;Lee, Kang-Mu;Bari, Wasimul;Kim, Hwa Young;Kim, Hye Jin;Yoon, Sang Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.627-636
    • /
    • 2016
  • The causative agent of pandemic cholera, Vibrio cholerae, infects the anaerobic environment of the human intestine. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly induced during anaerobic respiration with trimethylamine N-oxide (TMAO) as an alternative electron acceptor. However, the molecular mechanism of TMAO-stimulated CT production is not fully understood. Herein, we reveal that CT production during anaerobic TMAO respiration is affected by glucose fermentation. When the seventh pandemic V. cholerae O1 strain N16961 was grown with TMAO and additional glucose, CT production was markedly reduced. Furthermore, an N16961 Δcrp mutant, devoid of cyclic AMP receptor protein (CRP), was defective in CT production during growth by anaerobic TMAO respiration, further suggesting a role of glucose metabolism in regulating TMAO-mediated CT production. TMAO reductase activity was noticeably decreased when grown together with glucose or by mutation of the crp gene. A CRP binding region was identified in the promoter region of the torD gene, which encodes a structural subunit of the TMAO reductase. Gel shift assays further confirmed the binding of purified CRP to the torD promoter sequence. Together, our results suggest that the bacterial ability to respire using TMAO is controlled by CRP, whose activity is dependent on glucose availability. Our results reveal a novel mechanism for the regulation of major virulence factor production by V. cholerae under anaerobic growth conditions.

Identification and characterization of Shiga toxin-producing Escherichia coli isolated from diarrhea in calves (송아지 설사분변으로부터 Shiga toxin-producing Escherichia coli 의 분리 및 특성규명)

  • Lim, Keum-Gi;Kang, Mun-Il;Kim, Snag-Ki;Nam, Kyung-Woo;Park, Hyun-Joo;Park, Jin- Ryang;Cho, Kyoung-Oh;Lee, Bong-Joo
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.2
    • /
    • pp.135-142
    • /
    • 2006
  • Shiga toxin (stx) producing Escherichia coli (STEC) causes various clinical signs in animal and human. In this study, 255 fecal samples from calves showing diarrhea were collected from cattle farms in Chonnam province during the period from January 2005 to July 2005. Twenty six STEC (10%) were isolated from 255 fecal samples by PCR. The isolates displayed three different stx combinations (stx1 [69%], stx1 and stx2 [15%], and stx2 [38%]). The isolates were further studied for virulence associated genes and antimicrobial resistance to define the virulence properties. Intimin (eaeA), enterohemolysin (hlyA), and lipopolysaccharide (rfbE) virulence genes were detected in 6 (23%), 7 (26%), and 1 (3.8%) of the isolates, respectively, by PCR. One isolate possessing rfbE gene was typed as E. coli 0157 : H7 by agglutination test with O and H antisera. All 26 isolates showed susceptibility to amikacin (100%) and the majority of isolates showed high susceptibility to gentamicin (88.5%) and chloramphenicol (73.1%). But all isolates were resistant to penicillin. These results may provide the basic knowledge to establish strategies for the treatment and prevention of enteric disease in calves.

A Comparison of Adult and Pediatric Methicillin-Resistant Staphylococcus aureus Isolates Collected from Patients at a University Hospital in Korea

  • Park, Jin-Yeol;Jin, Jong-Sook;Kang, Hee-Young;Jeong, Eun-Hee;Lee, Je-Chul;Lee, Yoo-Chul;Seol, Sung-Yong;Cho, Dong-Taek;Kim, Jung-Min
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.447-452
    • /
    • 2007
  • In this study, we compared the phenotypic and genotypic characteristics of 138 MRSA isolates obtained from adult and pediatric patients (adult, 50; children, 88). The resistance rates against gentamicin, clindamycin, and ciprofloxacin were much higher in the adult MRSA isolates than in the pediatric MRSA isolates. The ermC gene, which is responsible for inducible clindamycin resistance, was detected in 52(59.1%) of the 88 pediatric MRSA isolates but in only 5(10.0%) of the 50 adult MRSA isolates. MRSA isolates of clonal type ST5 with an integration of SCCmec type II/II variants was the most predominant clone among the adult isolates, while clonal type ST72 with an integration of SCCmec IV/IVA was the most predominant clone among the pediatric MRSA isolates. Staphylococcal enterotoxin A and toxic shock syndrome toxin-1 were prevalent among the adult MRSA isolates but not among the pediatric MRSA isolates. The results of this study demonstrated remarkable differences between adult and pediatric MRSA isolates in terms of their antimicrobial susceptibility profiles, SCCmec type, multilocus sequence type, staphylococcal toxin genes, and erythromycin resistance genes.

Isolation and Characterization of Strain of Bacillus thuringiensis subsp. kenyae Containing Two Novel cry1-Type Toxin Genes

  • Choi, Jae-Young;Li, Ming Shun;Shim, Hee-Jin;Roh, Jong-Yul;Woo, Soo-Song;Jin, Byung-Rae;Boo, Kyung-Saeng;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1498-1503
    • /
    • 2007
  • To identify novel crystal proteins, Bacillus thuringiensis 2385-1 was isolated from Korean soil samples and characterized. The H-serotype of 2385-1 was identical to that of subsp. kenyae (H4a4c), and its crystal toxin was bipyramidal-shaped. However, 2385-1 showed a much higher toxicity towards Plutella xylostella and Spodoptera exigua larvae than subsp. kenyae. In addition, the crystal protein profile and plasmid DNA pattern of 2385-1 differed from those of subsp. kenyae. To verify the crystal protein gene types of 2385-1, a PCR-RFLP analysis was performed, and the results revealed that 2385-1 contained two novel cry1-type crystal protein genes, cryl-5 and cry1-12, in addition to the crylJal gene. The deduced amino acid sequences of cryl-5 and cry1-12 showed a 97.9% and 75.7% sequence similarity with the CrylAb and CrylJa crystal proteins, respectively. Among the novel crystal proteins, Cry1-5 showed a high toxicity towards P. xylostella and S. exigua larvae. In conclusion, B. thuringiensis 2385-1 is a new isolate in terms of its gene types, and should be a promising source for an insecticide to control lepidopteran larvae.