• 제목/요약/키워드: Toxicogenomics

검색결과 308건 처리시간 0.019초

Effects of Postnatal Exposure to Octylphenol on the Transcriptions of Steroidogenic Enzymes in Mouse Testis

  • Kim, Suel-Kee;Lee, Ho-Joon;An, Su-Yeon;Lee, Chang Joo;Yoon, Yong-Dal
    • 환경생물
    • /
    • 제22권4호
    • /
    • pp.550-558
    • /
    • 2004
  • The effects of postnatal exposure to octylphenol(OP) on the expressions of the steroidogenic enzymes and testosterone production were evaluated. Postnatal male mice (15-day-old) were injected with 2 or 20mg $kg^{-l}$ body weight (BW) of OP for 5 days and sacrificed on postnatal day 21. Testosterone concentration was measured by radioimmunoassay and the expressions of the testicular genes were determined by RT-PCR analyses. Significant reductions in the mean body and testis weight were observed in the OP treated animals. No marked alteration in the histological structure of the testis were observed, however, slight reduction in the seminiferous tubule diameter and the number of Leydig cells and several pyknotic cells could be identified in the 20 mg $kg^{-l}$ BW of the OP treated animals. Serum testosterone concentration was dramatically reduced and the mRNA expressions of the steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc) and $17\beta$-hydroxylase/Cl7-20 lyase $(P450_{17\alpha})$ were decreased. No significant changes of the gene expressions of the steroidogenic factor-l (SF-I) and estrogen and androgen receptor after the OP treatment showed that the decreased expressions of the steroidogenic enzymes in the present study did not correlate with these genes. Altogether, the present study demonstrates that postnatal treatment of OP inhibits steroidogenesis by decreasing the transcriptional expressions of the StAR and steroidogenic enzymes. The alteration in steroidogenesis may adversely affect the normal development of the testis and sper- matogenesis.

Prediction of Non-Genotoxic Carcinogenicity Based on Genetic Profiles of Short Term Exposure Assays

  • Perez, Luis Orlando;Gonzalez-Jose, Rolando;Garcia, Pilar Peral
    • Toxicological Research
    • /
    • 제32권4호
    • /
    • pp.289-300
    • /
    • 2016
  • Non-genotoxic carcinogens are substances that induce tumorigenesis by non-mutagenic mechanisms and long term rodent bioassays are required to identify them. Recent studies have shown that transcription profiling can be applied to develop early identifiers for long term phenotypes. In this study, we used rat liver expression profiles from the NTP (National Toxicology Program, Research Triangle Park, USA) DrugMatrix Database to construct a gene classifier that can distinguish between non-genotoxic carcinogens and other chemicals. The model was based on short term exposure assays (3 days) and the training was limited to oxidative stressors, peroxisome proliferators and hormone modulators. Validation of the predictor was performed on independent toxicogenomic data (TG-GATEs, Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System, Osaka, Japan). To build our model we performed Random Forests together with a recursive elimination algorithm (VarSelRF). Gene set enrichment analysis was employed for functional interpretation. A total of 770 microarrays comprising 96 different compounds were analyzed and a predictor of 54 genes was built. Prediction accuracy was 0.85 in the training set, 0.87 in the test set and increased with increasing concentration in the validation set: 0.6 at low dose, 0.7 at medium doses and 0.81 at high doses. Pathway analysis revealed gene prominence of cellular respiration, energy production and lipoprotein metabolism. The biggest target of toxicogenomics is accurately predict the toxicity of unknown drugs. In this analysis, we presented a classifier that can predict non-genotoxic carcinogenicity by using short term exposure assays. In this approach, dose level is critical when evaluating chemicals at early time points.

Genomic Alteration of Bisphenol A Treatment in the Testis of Mice

  • Kim, Seung-Jun;Park, Hye-Won;Youn, Jong-Pil;Ha, Jung-Mi;An, Yu-Ri;Lee, Chang-Hyeon;Oh, Moon-Ju;Oh, Jung-Hwa;Yoon, Seok-Joo;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.216-221
    • /
    • 2009
  • Bisphenol A (BPA) is commonly used in the production of pharmaceutical, industrial, and housing epoxy, as well as polycarbonate plastics. Owing to its extensive use, BPA can contaminate the environment either directly or through derivatives of these products. BPA has been classified as an endocrine disruptor chemicals (EDCs), and the primary toxicity of these EDCs in males involves the induction of reproductive system abnormality. First, in order to evaluate the direct effects on the Y chromosome associated with reproduction, we evaluated Y chromosome abnormalities using a Y chromosome microdeletion detection kit. However, we detected no Yq abnormality as the result of BPA exposure. Secondly, we performed high-density oligonucleotide array-based comparative genome hybridization (CGH) to assess genomic alteration as a component of our toxicity assessment. The results of our data analysis revealed some changes in copy number. Seven observed features were gains or losses in chromosomal DNA (P-value<1.0e-5, average log2 ratio>0.2). Interestingly, 21 probes of chr7:7312289-10272836 (qA1-qA2 in cytoband) were a commonly observed amplification (P-value 3.69e-10). Another region, chr14:4551029-10397399, was also commonly amplified (P-value 2.93e-12, average of log2 ratios in segment>0.3786). These regions include many genes associated with pheromone response, transcription, and signal transduction using ArrayToKegg software. These results help us to understand the molecular mechanisms underlying the reproductive effects induced by BPA.

Analysis of Gene Expression Modulated by Indole-3-carbinol in Dimethylbenz[a]anthracene-induced Rat Mammary Carcinogenesis

  • Kang, Jin-Seok;Park, Han-Jin;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.222-229
    • /
    • 2009
  • Our previous finding that pre-initiation treatment of indole-3-carbinol (I3C) represents a chemopreventive effect in dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis has prompted us to test the global expression of genes at an early stage. Rats were continuously fed 300 ppm I3C in their diet at 6 weeks of age and were injected with DMBA at 7 weeks of age, and were sacrificed at 8 weeks of age. Global gene expression analysis using oligonucleotide microarrays was conducted to detect altered genes in DMBA- or DMBA plus I3C-treated mammary glands. Altered genes were identified by fold changes of 1.2 and by t-test (P<0.05) from the log ratios of the hybridization intensity of samples between control (Group 1) and DMBA (Group 2), and from those of samples between DMBA (Group 2) and DMBA plus I3C (Group 3). From these genes, we chose altered genes that were up- or down-regulated by DMBA treatment and recovered to the control level by I3C treatment. For early stage of carcinogenesis, I3C treatment induced the recovery to normal levels of several genes including cell cycle pathway (cyclin B2, cell division cycle 2 homolog A), MAP signaling pathway (fibroblast growth factor receptor 1, platelet derived growth factor receptor, beta polypeptide), and insulin signaling (protein phosphatase 1, regulatory (inhibitor) subunit 3B and flotillin 2), which were up-regulated by DMBA treatment. In addition, I3C treatment induced the recovery to normal levels of several genes including those of MAPK signaling (transforming growth factor, beta receptor 1 and protein phosphatase 3, catalytic subunit, beta isoform), which were down-regulated by DMBA treatment. These results suggest that the targeting of these genes presents a possible approach for chemoprevention in DMBA-induced mammary carcinogenesis.

Toxicogenomics Study on TK6 Human Lymphoblast Cells Treated with Mitomycin C

  • Kim, Joo-Hwan;Koo, Ye-Mo;Lee, Woo-Sun;Suh, Soo-Kyung;Kang, Jin-Seok;Han, Eui-Sik;Kim, Seung-Hee;Park, Sue-N.
    • Molecular & Cellular Toxicology
    • /
    • 제3권3호
    • /
    • pp.165-171
    • /
    • 2007
  • Mitomycin C (MMC), an antitumor antibiotic isolated from Streptomyces caespitosus, is used in chemotherapy of gastric, bladder and colorectal cancer. MMC is activated in vivo to alkylate and crosslink DNA, via G-G interstrand bonds, thereby inhibiting DNA synthesis and transcription. This study investigates gene expression changes in response to MMC treatment in order to elucidate the mechanisms of MMC-induced toxicity. MMC was admistered with single dose (0.32 and 1.6 ${\mu}M$) to TK6 cells. Applied Biosystem's DNA chips were used for identifying the gene expression profile by MMC-induced toxicity. We identified up- or down-regulated 90 genes including cyclin M2, cyclin-dependent kinase inhibitor 1A (p21, cip1), programmed cell death 1, tumor necrosis factor (ligand) superfamily, member 9, et al. The regulated genes by MMC associated with the biological pathways apoptosis signaling pathway. Further characterization of these candidate markers related to the toxicity will be useful to understand the detailed mechanism of action of MMC.

Assessment of Feasibility for Developing Toxicogenomics Biomarkers by comparing in vitro and in vivo Genomic Profiles Specific to Liver Toxicity Induced by Acetaminophen

  • Kang, Jin-Seok;Jeong, Youn-Kyoung;Suh, Soo-Kyung;Kim, Joo-Hwan;Lee, Woo-Sun;Lee, Eun-Mi;Shin, Ji-He;Jung, Hai-Kwan;Kim, Seung-Hee;Park, Sue-Nie
    • Molecular & Cellular Toxicology
    • /
    • 제3권3호
    • /
    • pp.177-184
    • /
    • 2007
  • As a possible feasibility of the extrapolation between in vivo and in vitro systems, we investigated the global gene expression from both mouse liver and mouse hepatic cell line treated with hepatotoxic chemical, acetaminophen (APAP), and compared between in vivo and in vitro genomic profiles. For in vivo study, mice were orally treated with APAP and sacrificed at 6 and 24 h. For in vitro study, APAP were administered to a mouse hepatic cell line, BNL CL.2 and sampling was carried out at 6 and 24 h. Hepatotoxicity was assessed by analyzing hepatic enzymes and histopathological examination (in vivo) or lactate dehydrogenase (LDH) assay and morphological examination (in vitro). Global gene expression was assessed using microarray. In high dose APAPtreated group, there was centrilobular necrosis (in vivo) and cellular toxicity with the elevation of LDH (in vitro) at 24 h. Statistical analysis of global gene expression identified that there were similar numbers of altered genes found between in vivo and in vitro at each time points. Pathway analysis identified glutathione metabolism pathway as common pathways for hepatotoxicty caused by APAP. Our results suggest it may be feasible to develop toxicogenomics biomarkers or profiles by comparing in vivo and in vitro genomic profiles specific to this hepatotoxic chemical for application to prediction of liver toxicity.