• 제목/요약/키워드: Toxicity activity

검색결과 1,555건 처리시간 0.025초

마우스에서 Pectenotoxin 2의 급성독성 및 간대사 효소계에 주는 영향 (Acute Toxicity of Pectenotoxin 2 and Its Effects on Hepatic Metabolizing Enzyme System in Mice)

  • 윤미영;김영철
    • Toxicological Research
    • /
    • 제13권3호
    • /
    • pp.183-186
    • /
    • 1997
  • Acute toxicity of pectenotoxin 2 (PTX2) was examined in mice. Treatment of mice with a toxic dose of PTX2 resulted in clinical signs such as ataxia, cyanosis and an abrupt decrease in body temperature. Histopathological studies revealed that the liver is the major target organ for PTX2. Activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and sorbitol dehydrogenase (SDH) were significantly elevated by PTX2 administration. Glucose-6-phosphatase activities were not changed by the treatment. The PTX2 treatment decreased relative liver weight without changing the body weight. The effect of PTX2 on hepatic drug metabolizing enzyme system was determined. An ip dose of PTX2 (200 $\mu$g/kg) induced a significant decrease in the hepatic microsomal protein content. Cytochrome P-450 content, cytochrome b$_5$ content, NADPH cytochrome c reductase, aminopyrine N-demethylase activities, or hepatic glutathione content were not altered by PTX2 treatment.

  • PDF

Cytotoxic Effects of Nanoparticles Assessed In Vitro and In Vivo

  • Cha, Kyung-Eun;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권9호
    • /
    • pp.1573-1578
    • /
    • 2007
  • An increasing number of applications is being developed for the use of nanoparticles in various fields. We investigated possible toxicities of nanoparticles in cell culture and in mice. Nanoparticles tested were Zn (300 nm), Fe (100 nm), and Si (10-20, 40-50, and 90-110 nm). The cell lines used were brain, liver, stomach, and lung from humans. In the presence of nanopaticles, mitochodrial activity decreased zero to 15%. DNA contents decreased zero to 20%, and glutathione production increased zero to 15%. None of them showed a dose dependency. Plasma membrane permeability was not altered by nanoparticles. In the case of Si, different sizes of the nanoparticles did not affect cytotoxicity. The cytotoxicity was also shown to be similar in the presence of micro-sized ($45\;{\mu}m$) Si particles. Organs from mice fed with nanoparticles showed nonspecific hemorrhage, lymphocytic infiltration, and medullary congestion. A treatment with the micro-sized particle showed similar results, suggesting that the acute in vivo toxicity was not altered by nano-sized particles.

Neuronal Cell Protection Activity of Macrolactin A Produced by Actinomadura sp.

  • Kim, Hyeon-Ho;Kim, Won-Gon;Ryoo, In-Ja;Kim, Chang-Jin;Suk, Jae-Eun;Han, Kyou-Hoon;Hwang, Se-Young;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권6호
    • /
    • pp.429-434
    • /
    • 1997
  • Macrolactin A, 24-membered macrolide, was isolated from the culture broth of Actinomadura sp. as a neuronal cell protecting substance. In the cell assay, this compound inhibited glutamate toxicity in N18-RE-105 cells with an $EC_50$ value of 0.5 ${\mu}g/ml.

  • PDF

로나졸락 초산에스테르 및 로나졸락 알지니네이트의 생물약제학적 연구 (Biopharmaceutical Studies of Lonazolac Acetic Acid Ester and Lonazolac Argininate)

  • 함광수;이완하;양재헌
    • Journal of Pharmaceutical Investigation
    • /
    • 제21권2호
    • /
    • pp.103-110
    • /
    • 1991
  • Two new prodrugs of lonazolac, lonazolac acetic acid ester and lonazolac argininate, were prepared and examined for physicochemical properties and biopharmaceutical characteristics. The prodrugs were stable in solid state and lonazolac argininate showed higher dissolution rate than lonazolacca in both artificial gastric and intestinal juices. These prodrugs have higher analgegic effect than that of lonazolac-Ca in mice, and increased anti-inflammatory activities in rats. In addition, ulcerogenic effects and acute toxicity of these prodrugs were lower than those of lonaaolac-Ca. Lonazolac acetic acid ester showed larger area under the plasma concentration-time curves (AUC) than that of lonazolac. Therefore, it was suggested that these prodrugs of lonazolac have advantages over lonzolac-Ca for not only enhanced bioavailability but also decreased ulcerogenic and toxic effects.

  • PDF

양파식이가 흰쥐에서 사염화탄소 독성에 미치는 영향 (Effects of Onion Diet on Carbon Tetrachloride Toxicity of Rats)

  • 이명렬;이병래;박평심
    • 한국식품영양과학회지
    • /
    • 제20권2호
    • /
    • pp.121-125
    • /
    • 1991
  • This study designs to investigate effects of onion diet on carbon tetrachloride toxicity of rats. Experiments were performed with week's feeding, body weight, food intake, ratio of orgen weight/dody weight, serum lipid levels, superoxide dismutase and catalase activity and malondialdehyde(MDA) content in liver and kidney were determined. The content of serum total cholesterol in each group were lower than those of control group(p<0.05), especially at onion juice treated group. Serum HDL-cholesterol level of CBB and CBJ groups was significantly lower than that of control group (p<0.05). Superoxide dismutase activities of liver and kidney were significantly increased by carbon tetrachloride treatment and decreased by onion feeding. MDA contents in liver and kidney of CCl4 treated rats were significantly decreased by boiled and fresh onion fed group, compared with CCl4 treated control group. This result suggested that onion diet has a protective effect of CCl4 induced hepatotoxicity and nephrotoxicity of rat.

  • PDF

Structure and Antibiotic Activity of Fragment Peptides of Antifungal Protein Isolated From Aspergillus giganteus

  • Shin, Song-Yub;Kang, Joo-Hyun;Lee, Dong-Gun;Jin, Zhe-Zhu;Jang, So-Youn;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권3호
    • /
    • pp.276-281
    • /
    • 1999
  • In order to determine the functional region of the antifungal protein (AFP) isolated from Aspergillus giganteus responsible for growth inhibitory activity and the promotion of phospholipid vesicle aggregation, overlapping peptides covering the complete sequence of AFP were synthesized. The antibiotic activity against bacterial, fungal, and tumor cells, and the vesicle-aggregation activity of the synthetic peptides were investigated. The AFP functional sequence responsible for antibiotic and vesicle-aggregation activity was determined to be located within the region between AFP residues 19 to 32. AFP (19-32) exhibited an a-helical conformation in a cell membrane-like environment. AFP (19-32) displayed potent antibiotic activity against bacterial, fungal, and tumor cells without peptide toxicity as indicated by hemolysis. Accordingly, AFP (19-32) could be used as a good model for the design of effective antibiotic agents with powerful antibiotic activity yet without any cytotoxic effects against the host organism.

  • PDF

Reduction of hexavalent chromium by pseudomonas aeruginosa HP014

  • Oh, Young-Sook;Choi, Sung-Chan
    • Journal of Microbiology
    • /
    • 제35권1호
    • /
    • pp.25-29
    • /
    • 1997
  • Microbial reduction of hexavalent (VI) to trivalent (III) chromium decreases its toxicity by two orders of magnitude. In order to investigate the nature of Cr-reduction, Cr-resistant Pseudomonas aeruginosa HP014 was isolated and tested for its reduction capability. At the concentration of 0.5 mM Cr(VI), cell growth was not inhibited by the presence of Cr(VI) in a liquid medium, and Cr(VI) reduction was accompanied by ell growth. When cell-free extract was tested, the reduction of Cr(VI) showed a saturation kinetics with the maximum specific activity of 0.33 .mu.mol min$\^$-1/ mg$\^$-1/ cell protein, and an apparent K. of 1.73 mM Cr(VI). The activity required either NADH or NADPH as an electron donor. However, NADPH gave 50% as mush activity as sequently the supernatant and pelleted membrane fractions were tested for Cr(VI) reduction activity. The supernatant of the centrifugation showed almost the same Cr(VI) reduction activity as compared with that of the cell-free extract, indicating that the Cr(VI)-reducing activity of P. aeruginosa HP-14 is due to soluble enzyme. Moreover, the activity appeared to be the highest among the known activities, suggesting that the strain might be useful for remediation of Cr(VI)-contaminated sites.

  • PDF

마우스 및 랫드에서 botulinum toxin type A의 단회 및 28일 반복투여 독성시험 (Single and 28-day repeated dose toxicity studies of botulinum toxin type A in mice and rats)

  • 전태원;김지영;현선희;김남희;이상규;김춘화;우희동;양기혁;정현호;정태천
    • 대한수의학회지
    • /
    • 제43권1호
    • /
    • pp.57-66
    • /
    • 2003
  • Single and 28-day repeated dose toxicity studies of botulimnn toxin type A were carried out in ICR mice and Sprague-Dawley rats, respectively. In the single dose toxicity study, botulinwn toxin was injected intraperitoneally to male and female mice at a single dose of 40, 59, 89 133 and 200 ng/10 ml saline/kg. All animals died from 59 ng/kg group. Some clinical signs, such as decrease in locomotor activity, dyspnea, prone position and ptosis, were observed in most of both sexes from 59 ng/kg group, but no signs were seen in all animals at 40 ng/kg group. The results showed that the median lethal dose of botulinum toxin might be in the range of 40-59 ng/kg in both sexes. In the repeated dose toxicity study, the test material was administered intradermally for 28 days at doses of 0 (vehicle-treated control), 1.25, 2.5, 5.0 and $10.0ng/head/50{\mu}{\ell}$ saline in male and female rats. No test material-related changes were noted in survivals, clinical signs, food and water consumptions and gross finding in any group. Botulinum toxin treatment significantly decreased the body weight gain rate in male of 5.0 ng/head group and over and in female of 10.0 ng/head group compared to vehicle-treated control. One or more relative organ weights (i.e., spleen, thymus, liver and kidney) were increased significantly from 5.0 ng/head group compared to vehicle-treated control in both sexes. Serum biochemistry revealed increases in aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine phosphokinase, total protein and albumin in male, and increases in AST and ALT and decreases in $K^+$ and $Cl^-$ in female without dose-pendent manners. In the histopathological study, physical stimulation by needle caused slight inflammations of dennis. In addition, botulinum toxin treatment induced denervation of nerve cell and disuse of muscle, resulting in atrophy of skeletal muscle in both sexes from 2.5 ng/head group. When the antibodies to toxin were determined in all animals, a significant increase in serum antibodies was observed from 5.0 ng/head group. The results showed that the NOAEL of botulinum toxin might be 1.25 ng/head for 28-day repeated dose toxicity in rats.

송사리(Oryzias latipes)를 이용한 고염해수의 생태독성 및 단기적 행동변화에 관한 연구 (Toxicity and Behavioral Changes of Medaka (Oryzias latipes) by Brine Exposure)

  • 윤성진;박경수
    • 한국해양학회지:바다
    • /
    • 제16권1호
    • /
    • pp.39-51
    • /
    • 2011
  • 본 연구는 해수담수화 부산물인 고염해수에 대한 어류의 단기적인 영향을 평가하기 위하여 해양생태독성평가용 표준시험종인 송사리(Oryzias latipes)를 이용하여 급성독성평가 및 행동패턴의 변화를 관찰하였다. 30.0 psu 해수에 순치된 송사리를 7일 동안 고염수에 노출하여 급성독성평가를 수행한 결과, 40.0~80.0 psu에 노출된 송사리의 사망률은 농도-반응의 선형관계가 뚜렷하였다. 반면 40.0 psu 이하의 염분에서는 송사리의 독성반응이 관찰되지 않았으나 50.0 psu 보다 높은 농도에서는 뚜렷한 독성 반응이 나타났다(7-day $LC_{50}$=514 psu). 송사리의 행동 변화 분석은 카메라를 통해 투시된 실시간 배정 영상을 추출하여 현재의 프레임과 차영상을 추출하는 기법을 이용하였다. 고염수 노출에 따른 송사리의 행동변화를 분석한 결과, 40.0 psu와 50.0 psu에 노출되고, 각각 3.1시간과 4.6시간 동안 초기 염분 스트레스를 받은 후에는 안정된 활동패턴을 보였다. 그러나 60.0 psu 보다 높은 농도에 노출된 송사리의 활동량은 염분노출 초기에 급격히 증가하였으며, 50% 가량 사망하였다. 70.0 psu 보다 높은 농도에서 실험생물의 활동량은 노출 후 급격히 증가하였으며, 행동패턴은 심각하게 교란되었고, 12시간 이내에 모든 개체가 사망하였다. 본 연구 결과, 고염해수에 대한 급성독성평가와 행동변화 모니터링 결과는 유의한 연관성이 나타났으며, 따라서 해수담수화에 따른 고염해수의 해양배출은 확산후 최종농도가 50.0 psu 이하로 배출될 수 있도록 조절하여야한다. 또한 카메라 관찰을 통한 영상 분석 기법은 시험생물의 행동변화에 따른 영향을 실시간으로 모니터링할 수 있으므로 조기 경보시스템으로 활용 가지가 높은 것으로 판단된다.

Benzoyl peroxide의 환경에서의 초기 위해성 평가 (Initial Risk Assessment of Benzoyl peroxide in Environment)

  • 김미경;배희경;김수현;송상환;구현주;박광식;이문순;전성환;나진균
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권1호
    • /
    • pp.33-40
    • /
    • 2004
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,371 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. In this study, Quantitative Structure-Activity Relationships (QSAR) are used for getting adequate information on the physical -chemical properties of this chemical. And hydrolysis in water, acute toxicity to aquatic and terrestrial organisms for benzoyl peroxide were studied. The physical -chemical properties of benzoyl peroxide were estimated as followed; vapor pressure=0.00929 Pa, Log $K_{ow}$ = 3.43, Henry's Law constant=3.54${\times}$10$^{-6}$ atm-㎥/mole at $25^{\circ}C$, the half-life of photodegradation=3 days and bioconcentration factor (BCF)=92. Hydrolysis half-life of benzoyl peroxide in water was 5.2 hr at pH 7 at $25^{\circ}C$ and according to the structure of this substance hydrolysis product was expected to benzoic acid. Benzoyl peroxide has toxic effects on the aquatic organisms. 72 hr-Er $C_{50}$ (growth rate) for algae was 0.44 mg/1.,48 hr-E $C_{50}$ for daphnia was 0.07mg/L and the 96hr-L $C_{50}$ of acute toxicity to fish was 0.24mg/L. Acute toxicity to terrestrial organisms (earth worm) of benzoyl peroxide was low (14 day-L $C_{50}$ = > 1,000 mg/kg). Although benzoyl peroxide is high toxic to aquatic organisms, the substance if not bioaccumulated because of the rapid removal by hydrolysis (half-life=5.2 hr at pH 7 at $25^{\circ}C$) and biodegradation (83% by BOD after 21 days). The toxicity observed is assumed to be due to benzoyl peroxide rather than benzoic acid, which shows much lower toxicity to aquatic organisms. One can assume that effects occur before hydrolysis takes place. From the acute toxicity value of algae, daphnia and fish, an assessment factor of 100 was used to determine the predicted no effect concentration (PNEC). The PNEC was calculated to be 0.7$\mu\textrm{g}$/L based on the 48 hr-E $C_{50}$ daphnia (0.07 mg/L). The substance shows high acute toxicity to aquatic organisms and some information indicates wide-dispersive ore of this substance. So this substance is, a candidate for further work, even if it hydrolysis rapidly and has a low bioaccumulation potential. This could lead to local concern for the aquatic environment and therefore environmental exposure assessment is recommended.