• Title/Summary/Keyword: Toxic Chemical

Search Result 1,045, Processing Time 0.027 seconds

The Cell Viability on Kelp and Fir Biochar and the Effect on the Field Cultivation of Corn

  • Boakye, Patrick;Lee, Chul Woo;Lee, Won Mook;Woo, Seung Han
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • Field cultivation of corn and microbial cell viability tests using Pseudomonas putida K-5 were performed to assess the toxic effect of kelp seaweed biochar (KBC) and fir wood biochar (FBC) produced by pyrolysis. After 63 days growth, FBC increased corn growth by 4.9% without fertilizer and by 7.6% with fertilizer, while KBC decreased it by 20.2% without fertilizer and by 27.9% with fertilizer. Physico-chemical characterization of the biochars such as ICP, CHON, and proximate analyses showed that KBC contained large amount of metals and ashes which could be responsible for its inhibition to corn growth. Upon exposure of K-5 cells for 1 h to biochar extracts, the cell viability in KBC extracts was 48.2% and quite lower than that (78.6%) in FBC. Washed KBC biochar with water at 1:10 w/v % increased the cell viability to 54.0%. The results indicated that seaweed biochar may be careful to be used for plant growing additives due to its high concentrations of metals and ashes. This toxic effect could be reduced by proper washing method with water.

Development of Rubber Chemicals Automatic Mixed System for Toxic Chemical Block (유해화학물질 차단을 위한 고무약품 배합자동화장치 개발)

  • Kim J.Y.;Song K.S.;Chol C.J.;Kwak N.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.305-306
    • /
    • 2006
  • In process for production of Rubber Scheme Product that have the most inferior Working Environment is Medicine mixture and Scheme processing. Applying automation and Environment Treatment technology to the hazardous chemical and mixture processing, Through developed 'Mixture Automatic Machine for hazardous chemical Interruption type that is occurred at mixing rubber medicines', we try to decline worker's intensity of labour, Also overcomes solution of work evasion phenomenon and manpower supply and demand's difficulty by forming agreeable working environment and through the automatic scheme and mixture processing by preventing that hazardous chemical had known as disease causes of various importance disease is exposed to worker during the work. and we plan to do so that production of high added value product may be available.

  • PDF

A Numerical Study of Building Orientation Effects on Evacuation Standard in Case of Toxic Gas Leakage (독성 가스 누출 시 건물 방향이 대피 기준에 미치는 영향에 관한 수치 해석 연구)

  • Seungbum Jo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.12-18
    • /
    • 2023
  • The effective evacuation strategy according to the accident scenario is crucial to minimize human casualties in the event of toxic gas leak accidents. In this study, the effect of the direction of a building and the location of an industrial complex on the increase in indoor concentration and outdoor diffusion was examined under the same leakage conditions, and effective evacuation criteria were established. In addition, the guidelines for building directions were suggested when constructing buildings that would mitigate human damage caused by chemical accidents. Three scenarios where buildings faced the front, side, and rear of the leakage direction were investigated through CFD simulations. The results revealed that when the building faced the industrial complex, both indoor and outdoor average gas concentrations increased significantly, reaching up to 120 times higher than the other two orientations. Moreover, the indoor space was filled with toxic gas substances more than twice in the same time due to the rapid increase of indoor concentration rate. In cases where the building's windows were positioned at the front, toxic gas stagnation occurred around the building due to pressure differences and reduced flow velocities. Based on our findings, the implementation of these guidelines will contribute to safeguarding residents by minimizing exposure to toxic gas during chemical accidents.

Estimation of the Relative Risk of the Elderly with Different Evacuation Velocity in a Toxic Gas Leakage Accident (독성물질 누출 시 대피 속도 차이에 따른 고령자의 상대적 위험도 산정)

  • Lee, H.T.;Kwak, J.;Park, J.;Ryu, J.;Lee, J.;Jung, Seungho
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.13-21
    • /
    • 2019
  • Leakage accidents in businesses dealing with hazardous chemicals can have a great impact on the workers inside the workplace, as well as residents outside the workplace. In fact, there were cases where hazardous chemicals leaked from many businesses. As a result, the Chemicals Control Act(CCA) was enacted in 2015, the Ministry of Environment introduced an Off-site Risk Assessment(ORA). The purpose of the ORA is to secure safety from the installation of the design of the workplace facilities so that chemical accidents of hazardous chemical handling facilities do not cause human or physical damage outside the workplace. In general, the ORA qualitatively determines where a protected facility is within the scope of the accident scenario. However, elderly who belong to the sensitive group is more sensitive than the general group under the same chemical accident effect, and the extent of the damage is serious. According to data from the Korea National Statistic Office, the number of elderly people is expected to increase steadily. Therefore, a quantitative risk analysis considering the elderly is necessary as a result of a chemical accident. In this study, accident scenarios for 14 locations were set up to perform emergency evacuation due to toxic gas leakage of Cl2(Chlorine) and HF(Hydrogen Fluoride), and the effects of exposure were analyzed based on the evacuation velocity difference of age 20s and 60s. The ALOHA(Areal Locations of Hazardous Atmospheres) program was used to calculate the concentration for assessing the effects. The time of exposure to toxic gas was calculated based on the time it took for the evacuation to run from the start point to the desired point and a methodology was devised that could be applied to the risk calculation. As a result of the study, the relative risk of the elderly, the sensitive group, needs to be determined.

A Study on the Installation of Chemical, Biological and Radiological Protection Facilities Using Existing Buildings (기존 건축물을 활용한 화생방 방호시설 설치에 관한 연구)

  • Eun-Gu Ham;Han-Duk Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.573-583
    • /
    • 2024
  • Purpose: This study predicted the flow of chemical, biological, and radiological materials in chemical, biological, and radiological defense facilities within the base during a chemical, biological, and radiological attack based on the conditions of the facility before the existing improvement, analyzed the flow of pollutants and the human impact of toxic substances, and identified the occurrence of leakage. Method: Assuming that the simple chemical, biological, and radiological defense facility improvement plan, which reflects the characteristics of the building, has been improved to the facility standard, the flow of chemical, biological, and radiological materials in the chemical, biological, and radiological defense facility within the base was predicted in the event of a chemical, biological, and radiological attack under the same conditions, and the flow of contaminants and the impact on occupants by toxic substances were analyzed to determine spatial safety. Result: In the case of Plan 1, it was found that leakage occurred after approximately 250 seconds in spaces where existing flat-panel chemical, biological, and radiological defense facilities were not installed. In the cases of Plans 2 and 3, it was found that leakage occurred in spaces where existing flat-panel chemical, biological, and radiological defense facilities were not installed. Conclusion: n the case of plans 1, 2, and 3, it was found that airtightness was maintained because no leakage occurred in the improved plane. In the case of plan 4, airtightness was not maintained due to leakage in the space where the existing plane simple chemical, biological, and radiological protection facilities were not installed.

Determination Method of the Criteria and the Hazard Category for Upper and Lower Tier Qualifying Quantities of the Toxic Substance (유독물질 상위 및 하위규정수량의 기준 및 위험 범주 선정 방안)

  • Hyodong, Kim;Kyoshik, Park
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.9-17
    • /
    • 2022
  • Qualifying quantities (upper tier (UT) and lower tier (LT)) are designated for the regulation of toxic substances. In this study, we aimed to establish systematic criteria for the qualifying quantities by comparing the South of Korea chemical control act with the European Seveso III Directive (Seveso III). In Seveso III, qualifying quantities are defined as "hazard categories" applying GHS (Globally Harmonized System of Classification and Labelling of Chemicals), and LTR (lower-tier requirements) and UTR (upper-tier requirements) are determined. The Pro HC (proposed hazard categories) were relevant to the GHS classification of toxic substances and were compared with the currently regulated qualifying quantities. Furthermore, we estimated the Pro LTR (proposed lower-tier requirements) and Pro UTR (proposed upper-tier requirements) corresponding to each Pro HC. Consequently, it was supposed that LT and UT were selected based on GHS like those of Seveso III. Therefore, designation criteria for qualifying quantities should be established by setting the Pro HC such as in Seveso III, rather than designating the qualifying quantities of toxic substances by itself individually. In addition, qualifying quantities should not be delegated to GHS classifications (H302, H341, H411) that do not meet the criteria for the designation of toxic substances, and the corresponding substances should be excluded from classification as toxic substances. This study provides insights into the selection of hazard categories and criteria for qualifying quantities of toxic substances.

Construction and Characterization of a Recombinant Bioluminescence Streptomycetes for Potential Environmental Monitoring

  • Park, Hyun-Joo;Hwang, Keum-Ok;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.706-709
    • /
    • 2002
  • Bacterial bioluminescence has been known to be a highly valuable reporter system for its potential application as an effective and simple environmental monitoring method for toxic compounds. In this short report, we constructed a streptomycetes-Escherichia coli shuttle vector-containing bioluminescence system and evaluated its potential application for toxic compounds monitoring. The luxAB biolurninescence genes from Vibrio harveyi were cloned into a streptornycetes-E. coli shuttle vector (named pESK004) and functionally expressed in Streptomyces lividans. The recombinant S. lividans containing pESK004 exhibited an optimal biolurninescence at the optical density ($OD_{600\;nm}$) of 0.4-0.5 and aldehyde concentration of 0.005%. When the recombinant bioluminescence streptomycetes was exposed to a toxic compound such as heavy metals, chlorinated phenols, or pesticides, the bioluminescence was decreased proportionally to the concentration of toxic compound in the assay mixture. The $EC_{50}$ (effective concentration to decrease 50% of the bioluminescence prior to exposure) values in the recombinant biolurninescence streptomycetes for mercury, 2,4-dichlorophenol, and malathion were measured at 2.2 ppm, 144.0 ppm, and 82.4 ppm, respectively. The degree of sensitivity and specificity pattern toward these toxic compounds characterized in this recombinant bioluminescence streptomycetes were unique when compared with previously reported bacterial bioluminescence systems, and this revealed that a recombinant bioluminescence streptomycetes might provide an alternative or complementary system for potential environmental monitoring.

The Effects Influencing Soil Adsorption by various Chemical Compounds (다양한 화합물이 토양의 흡착 거동에 미치는 영향)

  • Ahn, Jong-Pil;Park, Sang-Bum;Ahn, Ki-Mun;Heo, Hong-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1098-1108
    • /
    • 2008
  • Batch type and column type experiments were performed in order to predict adsorption and movement within soil. Clay minerals montmorillonite and kaolinite were respectively added to paraquat which is a cationic compound with long residual time, 2,4-D which is an anionic compound with relatively short residual time and napropamide which is an amphoteric compound. Therefore, it is very important to determine the movements of toxic pollutants in the ground soil to establish measures to prevent soil grounds contamination and to restore contaminated soils effectively, because contamination of soil is getting severe due to these toxic wastes, industrial waste water, and agricultural chemicals, etc. Therefore, in this study, we have carried out column and batch experiments by using general toxic organic compounds as test samples in order to restore contaminated soils effectively as well as to prepare a basic data to develop absorbents that will remove various toxic organic compounds, with a grandiose purpose to prevent contaminations of soil and grounds due to various toxic organic compounds.

  • PDF

Generating Synthetic Raman Spectra of DMMP and 2-CEES by Mathematical Transforms and Deep Generative Models (수학적 변환과 심층 생성 모델을 활용한 DMMP와 2-CEES의 모의 라만 분광 생성)

  • Sungwon Park;Boseong Jeong;Hongjoong Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.422-430
    • /
    • 2023
  • To build an automated system detecting toxic chemicals from Raman spectra, we have to obtain sufficient data of toxic chemicals. However, it usually costs high to gather Raman spectra of toxic chemicals in diverse situations. Tackling this problem, we develop methods to generate synthetic Raman spectra of DMMP and 2-CEES without actual experiments. First, we propose certain mathematical transforms to augment few original Raman spectra. Then, we train deep generative models to generate more realistic and diverse data. Analyzing synthetic Raman spectra of toxic chemicals generated by our methods through visualization, we qualitatively verify that the data are sufficiently similar to original data and diverse. For conclusion, we obtain a synthetic dataset of DMMP and 2-CEES with the proposed algorithm.