• 제목/요약/키워드: ToxA

검색결과 86건 처리시간 0.02초

Molecular Cloning of Two cDNAs Encoding an Insecticidal Toxin from the Spider, Araneus ventricosus, and Construction of a Recombinant Baculovirus Expressing a Spider Toxin

  • Chung, Eun-Hwa;Lee, Kwang-Sik;Han, Ji-Hee;Je, Yeon-Ho;Chang, Jin-Hee;Roh, Jong-Yul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제4권1호
    • /
    • pp.43-49
    • /
    • 2002
  • We have cloned cDNAs encoding toxin from the spider, Araneus ventricosus, and constructed a recombinant baculovirus expressing the insecticidal toxin. The cDNAs encoding toxin were cloned from the cDNA library of A. ventricosus. Sequence analysis of the cDNAs encoding the toxin of A. ventricosus revealed that the 240 bp cDNA for AvTox-1 and 192 bp cDNA for AvTox-2 have an open reading frame of 80 and 64 amino acid residues, respectively. The deduced protein sequence of the toxin genes of AvTox-1 and AvTox-2 was aligned to that of the snack Anemonia sulcata and scorpion Centruroides limpidus limpidus, respectively. Northern blot analysis indicated that AvTox-2 toxin gene showed a fat body-spe-cific expression pattern at the transcriptional level. Furthermore, we have explored the possibility of improving baculovirus by incorporating the A. vontricosus toxin gene into Bombyx mori nuclear polyhedrosis virus genome under the control of polyhedrin promoter, The AvTox-2 toxin gene was expressed as approximately 5.8 kDa band in the recombinant baculovirus-injected silkworm larvae. Bioassays with the recombinant virus expressing AvTox-2 on 5th instar silkworm larvae demonstrated a decrease in the time to kill $(LT_{50} days)$ compared to wild-type BmNPV-Kl $(LT_{50} 6.72 days)$ in the injection of 10 viruses. These results indicate that A. ventricosus toxin is a novel member of the spider toxin family, suggesting that the toxin gene can be used in recombinant baculoviruses to reduce insect feeding damage and increase the speed of insect kill.

Reaction of Global Collection of Rye (Secale cereale L.) to Tan Spot and Pyrenophora tritici-repentis Races in South Dakota

  • Abdullah, Sidrat;Sehgal, Sunish K.;Glover, Karl D.;Ali, Shaukat
    • The Plant Pathology Journal
    • /
    • 제33권3호
    • /
    • pp.229-237
    • /
    • 2017
  • Rye (Secale cereale L.) serves as an alternative host of Pyrenophora tritici-repentis (PTR) the cause of tan spot on wheat. Rye is cultivated as a forage or cover crop and overlaps with a significant portion of wheat acreage in the U.S. northern Great Plains; however, it is not known whether the rye crop influences the evolution of PTR races. We evaluated a global collection of 211 rye accessions against tan spot and assessed the diversity in PTR population on rye in South Dakota. All the rye genotypes were inoculated with PTR races 1 and 5, and infiltrated with Ptr ToxA and Ptr ToxB, at seedling stage. We observed 21% of the genotypes exhibited susceptibility to race 1, whereas, 39% were susceptible to race 5. All 211 accessions were insensitive to both the Ptr toxins. It indicates that though rye exhibits diversity in reaction to tan spot, it lacks Ptr ToxA and ToxB sensitivity genes. This suggests that unknown toxins or other factors can lead to PTR establishment in rye. We characterized the race structure of 103 PTR isolates recovered from rye in South Dakota. Only 22% of the isolates amplified Ptr ToxA gene and were identified as race 1 based on their phenotypic reaction on the differential set. The remaining 80 isolates were noted to be race 4. Our results show that races 1 and 4 are prevalent on rye in South Dakota with a higher frequency of race 4, suggesting a minimal role of rye in the disease epidemiology.

Analyses and improvement of fuel temperature coefficient of rock-like oxide fuel in LWRs from neutronic aspect

  • Shelley, Afroza
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1156-1163
    • /
    • 2020
  • Fuel temperature coefficient (FTC) of PuO2+ZrO2 (ROX) fueled LWR cell is analyzed neutronically with reactor- and weapons-grade plutonium fuels in comparison with a U-free PuO2+ThO2 (TOX), and a conventional MOX fuel cells. The FTC value of a ROX fueled LWR is smaller compared to a TOX or a MOX fueled LWRs and becomes extremely positive especially, at EOL. This is because when fuel temperature is increased, thermal neutron spectrum is shifted to harder, which is extreme at EOL in ROX fuel than that in TOX and MOX fuels. Consequently at EOL, 239Pu and 241Pu contributes to positive fuel temperature reactivity (FTR) in ROX fuel, while they have negative contribution in TOX and MOX fuels. The FTC problem of ROX fuel is mitigated by additive ThO2, UO2 or Er2O3. In ROX-additive fuel, the atomic density of fissile Pu becomes more than additive free ROX fuel especially at EOL, which is the main cause to improve the FTC problem. The density of fissile Pu is more effective to decrease the thermal spectrum shifts with increase the fuel temperature than additive ThO2, UO2 or Er2O3 in ROX fuel.

H-NS Silences Gene Expression of LeuO, the Master Regulator of the Cyclic(Phe-Pro)-dependent Signal Pathway, in Vibrio vulnificus

  • Park, Na-Young;Lee, Keun-Woo;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권6호
    • /
    • pp.830-838
    • /
    • 2020
  • The histone-like nucleoid structuring protein (H-NS) is an abundant global regulator of environmentally controlled gene expression. Herein, we demonstrate that H-NS represses the expression of LeuO, the master regulator of the cyclic(Phe-Pro)-dependent signaling pathway, by directly binding to the upstream region of the gene. H-NS binds to a long stretched region (more than 160-bp long), which overlaps with binding sites for ToxR and LeuO. A high quantity of H-NS outcompetes ToxR for binding to the cis-acting element of leuO. However, our footprinting analyses suggests that the binding of H-NS is relatively weaker than LeuO or ToxR at the same molarity. Considering that the DNA nucleotide sequences of the upstream regions of leuO genes are highly conserved among various Vibrio, such patterns as those found in V. vulnificus would be a common feature in the regulation of leuO gene expression in Vibrionaceae. Taken together, these results suggest that, in species belonging to Vibrionaceae, H-NS regulates the expression of leuO as a basal stopper when cFP-ToxR mediated signaling is absent.

Necrotrophic Fungus Pyrenophora tritici-repentis Triggers Expression of Multiple Resistance Components in Resistant and Susceptible Wheat Cultivars

  • Andersen, Ethan J.;Nepal, Madhav P.;Ali, Shaukat
    • The Plant Pathology Journal
    • /
    • 제37권2호
    • /
    • pp.99-114
    • /
    • 2021
  • Tan spot of wheat, caused by Pyrenophora tritici-repentis (Ptr), results in a yield loss through chlorosis and necrosis of healthy leaf tissue. The major objective of this study was to compare gene expression in resistant and susceptible wheat cultivars after infection with Ptr ToxA-producing race 2 and direct infiltration with Ptr ToxA proteins. Greenhouse experiments included exposure of the wheat cultivars to pathogen inoculum or direct infiltration of leaf tissue with Ptr-ToxA protein isolate. Samples from the experiments were subjected to RNA sequencing. Results showed that ToxA RNA sequences were first detected in samples collected eight hours after treatments indicating that upon Ptr contact with wheat tissue, Ptr started expressing ToxA. The resistant wheat cultivar, in response to Ptr inoculum, expressed genes associated with plant resistance responses that were not expressed in the susceptible cultivar; genes of interest included five chitinases, eight transporters, five pathogen-detecting receptors, and multiple classes of signaling factors. Resistant and susceptible wheat cultivars therefore differed in their response in the expression of genes that encode chitinases, transporters, wall-associated kinases, permeases, and wound-induced proteins, among others. Plants exposed to Ptr inoculum expressed transcription factors, kinases, receptors, and peroxidases, which are not expressed as highly in the control samples or samples infiltrated with ToxA. Several of the differentially expressed genes between cultivars were found in the Ptr resistance QTLs on chromosomes 1A, 2D, 3B, and 5A. Future studies should elucidate the specific roles these genes play in the wheat response to Ptr.

Tox-Info 시스템의 중독정보 데이터베이스와 응급실에 내원하는 중독 환자 분포의 비교 (Comparison between Emergency Patient Poisoning Cases and the Tox-Info System Database)

  • 김현종;김양원;김현;박창배;소병학;이경룡;이경우;이경원;이성우;이장영;조규종;조준호;정성필
    • 대한임상독성학회지
    • /
    • 제10권1호
    • /
    • pp.8-14
    • /
    • 2012
  • Purpose: The Tox-Info system is a poisonous substance information database developed by the Korean National Institute of Food and Drug Safety Evaluation. The aim of this study was to estimate the coverage effectiveness of the Tox-Info system by comparing the toxic substances included in the database with the distribution of the toxic substances implicated in the cases of intoxicated patients presenting to emergency departments. The secondary aim of the study was to propose any additional substances that should be added to the database. Methods: We retrospectively reviewed the medical records of patients suffering with toxic exposure who had visited any of 12 selected emergency departments in Korea from January 2010 to December 2011. The identified toxic substances were classified into groups including prescription drugs, agricultural chemicals, household products, animals or plants, herbal drugs, and others. We calculated the coverage rate of the Tox-Info database relative to the number of intoxication cases and the type of toxic substances involved. Results: A total of 5,840 intoxicated patient records were collected. Their mean age was $46.6{\pm}20.5$ years and 56.2% were female. Of the total intoxication cases, 87.8% of the identified toxic substances were included in the Tox-Info database, while only 41.6% of all of the types of identified toxic substances were included. Broken down by category, 122 prescription drugs, 15 agricultural chemicals, 12 household products, 14 animals or plants and 2 herbal drugs involved in poisoning cases were not included in the Tox-info database. Conclusion: This study demonstrated the clinical usefulness of the Tox-Info system. While 87.8% of the substances involved in the cases were included in the Tox-Info database, the database should be continuously updated in order to include even the most uncommon toxic substances.

  • PDF

Pseudomonas syringae pv. tabaci의 독소생성에 미치는 Phage의 영향 (Influence of Phage on Production of Tabtoxin by Pseudomonas syringae pv.tabaci)

  • 전홍기;유진삼;성영림;백형석
    • 한국미생물·생명공학회지
    • /
    • 제22권3호
    • /
    • pp.246-251
    • /
    • 1994
  • Pseudomonas syringae pv. tabaci(Pa45) Tox$^{-}$ cells were infected with phage Ps90 strain isolated form the natural source, and the Ps90 lysogenized bacterial cells were then obtained. The lyxohenized cells produced tabtoxin and the phage induction occured when the cells treated with mitomycin C. The Southren hybridization alnalysis of the four EcoRI-treated plasmid fragments and the EcoRI-digested genomic DNA of Tox$^{+}$ and Tox$^{-}$ strains using phage DNA as a probe showed that only those DNA fragment of Tox$^{+}$ strain were related to the Ps90 phage DNA. Based on these results, the tabtoxin producing DNA fragments of the bacteris are presumed to have originated from the same phage DNA, and to be responsible for the pathogenecity of the bactrial strains.

  • PDF

철근트러스 압접 데크플레이트 바닥 구조의 설계 프로그램 (Design Program of Deck Plate Slab System with Non-welding Truss Type Reinforced Bar)

  • 윤명호;오상훈
    • 한국디지털건축인테리어학회논문집
    • /
    • 제8권1호
    • /
    • pp.57-64
    • /
    • 2008
  • There are many problems in present truss-deck slab system for example welding defect, segregation, water leakage, rust and tarnish etc. These problems may be caused by spot welding thin galvanized steel plate and lattice bar. The TOX Joining Systems is to join metal sheets of different material and thickness with and without coating or painting without adding heat or a joining part. Newly developed TOX-deck slab system using non-welding joint is free from above mentioned problems. The objects of this study are suggestion of design strength of TOX joint by experimental and statistical analyses and development of window based program to design the TOX-deck slab system.

  • PDF

Inactivated Vibrio cholerae Strains That Express TcpA via the toxT-139F Allele Induce Antibody Responses against TcpA

  • Eun Jin Kim;Jonghyun Bae;Young-Jun Ju;Do-Bin Ju;Donghyun Lee;Seonghyeon Son;Hunseok Choi;Thandavarayan Ramamurthy;Cheol-Heui Yun;Dong Wook Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권11호
    • /
    • pp.1396-1405
    • /
    • 2022
  • Cholera remains a major global public health problem, for which oral cholera vaccines (OCVs) being a valuable strategy. Patients, who have recovered from cholera, develop antibody responses against LPS, cholera toxin (CT), toxin-coregulated pilus (TCP) major subunit A (TcpA) and other antigens; thus, these responses are potentially important contributors to immunity against Vibrio cholerae infection. However, assessments of the efficacy of current OCVs, especially inactivated OCVs, have focused primarily on O-antigen-specific antibody responses, suggesting that more sophisticated strategies are required for inactivated OCVs to induce immune responses against TCP, CT, and other antigens. Previously, we have shown that the toxT-139F allele enables V. cholerae strains to produce CT and TCP under simple laboratory culture conditions. Thus, we hypothesized that V. cholerae strains that express TCP via the toxT-139F allele induce TCP-specific antibody responses. As anticipated, V. cholerae strains that expressed TCP through the toxT-139F allele elicited antibody responses against TCP when the inactivated bacteria were delivered via a mouse model. We have further developed TCP-expressing V. cholerae strains that have been used in inactivated OCVs and shown that they effect an antibody response against TcpA in vivo, suggesting that V. cholerae strains with the toxT-139F allele are excellent candidates for cholera vaccines.