DOI QR코드

DOI QR Code

H-NS Silences Gene Expression of LeuO, the Master Regulator of the Cyclic(Phe-Pro)-dependent Signal Pathway, in Vibrio vulnificus

  • Received : 2020.01.15
  • Accepted : 2020.03.24
  • Published : 2020.06.28

Abstract

The histone-like nucleoid structuring protein (H-NS) is an abundant global regulator of environmentally controlled gene expression. Herein, we demonstrate that H-NS represses the expression of LeuO, the master regulator of the cyclic(Phe-Pro)-dependent signaling pathway, by directly binding to the upstream region of the gene. H-NS binds to a long stretched region (more than 160-bp long), which overlaps with binding sites for ToxR and LeuO. A high quantity of H-NS outcompetes ToxR for binding to the cis-acting element of leuO. However, our footprinting analyses suggests that the binding of H-NS is relatively weaker than LeuO or ToxR at the same molarity. Considering that the DNA nucleotide sequences of the upstream regions of leuO genes are highly conserved among various Vibrio, such patterns as those found in V. vulnificus would be a common feature in the regulation of leuO gene expression in Vibrionaceae. Taken together, these results suggest that, in species belonging to Vibrionaceae, H-NS regulates the expression of leuO as a basal stopper when cFP-ToxR mediated signaling is absent.

Keywords

References

  1. Picker MA, Wing HJ. 2016. H-NS, its family members and their regulation of virulence genes in Shigella species. Genes. 7: 112-126. https://doi.org/10.3390/genes7120112
  2. Ghosh A, Paul K, Chowdhury R. 2006. Role of the histone-like nucleoid structuring protein in colonization, motility, and biledependent repression of virulence gene expression in Vibrio cholerae. Infect. Immun. 74: 3060-3064. https://doi.org/10.1128/IAI.74.5.3060-3064.2006
  3. Ayala JC, Silva AJ, Benitez JA. 2017. H-NS: an overarching regulator of the Vibrio cholerae life cycle. Res. Microbiol. 168: 16-25. https://doi.org/10.1016/j.resmic.2016.07.007
  4. Nye MB, Pfau JD, Skorupski K, Taylor RK. 2000. Vibrio cholerae H-NS silences virulence gene expression at multiple steps in the ToxR regulatory cascade. J. Bacteriol. 182: 4295-4303. https://doi.org/10.1128/JB.182.15.4295-4303.2000
  5. Park DK, Lee KE, Baek CH, Kim IH, Kwon JH, Lee WK, et al. 2006. Cyclo(Phe-Pro) modulates the expression of ompU in Vibrio spp. J. Bacteriol. 188: 2214-2221. https://doi.org/10.1128/JB.188.6.2214-2221.2006
  6. Bina XR, Taylor DL, Vikram A, Ante VM, Bina JE. 2013. Vibrio cholerae ToxR downregulates virulence factor production in response to cyclo (Phe-Pro). mBio 4: e00366-00313.
  7. Park NY, Kim H, Wen Y, Lee KW, Lee S, Kim JA, et al. 2019. Multi-factor regulation of the master modulator LeuO for the cyclic-(Phe-Pro) signaling pathway in Vibrio vulnificus. Sci. Rep. 9: 20135. https://doi.org/10.1038/s41598-019-56855-4
  8. Kim IH, Kim SY, Park NY, Wen Y, Lee KW, Yoon SY, et al. 2018. Cyclo-(l-Phe-l-Pro), a quorum-sensing signal of Vibrio vulnificus, induces expression of hydroperoxidase through a ToxR-LeuO-HU-RpoS signaling pathway to confer resistance against oxidative stress. Infect. Immun. 86: e00932-17.
  9. Lee K, Jeong JE, Kim IH, Kim KS, Ju BG. 2015. Cyclo(Phenylalanine-proline) induces DNA damage in mammalian cells via reactive oxygen species. J. Cell. Mol. Med. 19: 2851-2864. https://doi.org/10.1111/jcmm.12678
  10. Hernandez Lucas I, Calva E. 2012. The coming of age of the LeuO regulator. Mol. Microbiol. 85: 1026-1028. https://doi.org/10.1111/j.1365-2958.2012.08175.x
  11. Guadarrama C, Villasenor T, Calva E. 2014. The subtleties and contrasts of the LeuO regulator in Salmonella Typhi: implications in the immune response. Front. Immunol. 5: 581-587. https://doi.org/10.3389/fimmu.2014.00581
  12. Maddocks SE, Oyston PC. 2008. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154: 3609-3623. https://doi.org/10.1099/mic.0.2008/022772-0
  13. Dillon SC, Espinosa E, Hokamp K, Ussery DW, Casadesus J, Dorman CJ. 2012. LeuO is a global regulator of gene expression in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 85: 1072-1089. https://doi.org/10.1111/j.1365-2958.2012.08162.x
  14. Lang B, Blot N, Bouffartigues E, Buckle M, Geertz M, Gualerzi CO, et al. 2007. High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res. 35: 6330-6337. https://doi.org/10.1093/nar/gkm712
  15. Milton DL, O'Toole R, Horstedt P, Wolf-Watz H. 1996. Flagellin A is essential for the virulence of Vibrio anguillarum. J. Bacteriol. 178: 1310-1319. https://doi.org/10.1128/JB.178.5.1310-1319.1996
  16. Simon R, Priefer U, Puhler A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat. Biotechnol. 1: 784-791. https://doi.org/10.1038/nbt1183-784
  17. Miller, J. 1972. Assay of $\beta$-galactosidase (J. Miller Ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  18. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop II RM. et al. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175-176. https://doi.org/10.1016/0378-1119(95)00584-1
  19. Goss TJ, Morgan SJ, French EL, Krukonis ES. 2013. ToxR recognizes a direct repeat element in the toxT, ompU, ompT, and ctxA promoters of Vibrio cholerae to regulate transcription. Infect. Immun. 81: 884-895. https://doi.org/10.1128/IAI.00889-12
  20. Kim IH, Son JS, Wen YC, Chung SM, Min GY, Park NY, et al. 2013. Transcriptomic analysis of genes modulated by cyclo(LPhenylalanine-L-Proline) in Vibrio vulnificus. J. Microbiol. Biotechnol. 23: 1791-1801. https://doi.org/10.4014/jmb.1308.08068
  21. Dorman CJ. 2004. H-NS: a universal regulator for a dynamic genome. Nat. Rev. Microbiol. 2: 391-400. https://doi.org/10.1038/nrmicro883
  22. Hizver J, Rozenberg H, Frolow F, Rabinovich D, Shakked Z. 2001. DNA bending by an adenine-thymine tract and its role in gene regulation. Proc. Natl. Acad. Sci. USA 98: 8490-8495. https://doi.org/10.1073/pnas.151247298
  23. Gordon BR, Li Y, Cote A, Weirauch MT, Ding P., Hughes TR, et al. 2011. Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. Proc. Natl. Acad. Sci. USA 108: 10690-10695. https://doi.org/10.1073/pnas.1102544108
  24. Shimada T, Bridier A, Briandet R, Ishihama A. 2011. Novel roles of LeuO in transcription regulation of E. coli genome: antagonistic interplay with the universal silencer H-NS. Mol. Microbiol. 82: 378-397. https://doi.org/10.1111/j.1365-2958.2011.07818.x