• 제목/요약/키워드: Towing ship

검색결과 225건 처리시간 0.024초

비선형 선배열 형상 추정을 위한 계수 반복 다항 근사화 기법 (Iterative Polynomial Fitting Technique Using Polynomial Coefficients for the Nonlinear Line Array Shape Estimation)

  • 조점군
    • 한국군사과학기술학회지
    • /
    • 제9권2호
    • /
    • pp.20-25
    • /
    • 2006
  • Low frequency towed line array with high array gain and beam resolution is a long range surveillance sensor for anti-submarine warfare. The beam characteristics is however deteriorated due to the distorted line array sensor caused by low towing speed, wind, current, and towing ship maneuvering. An adaptive beamforming method is utilized in this paper to enhance the distorted line array beam performance by estimating and compensating the nonlinear array shape. A polynomial curve fitting in the least square sense is used to estimate the array shape iteratively with the distributed heading sensors data along the array. Real time array shape estimation and nonlinear array beam calculation is applied to a very long towed line array sensor system and the beam performance is evaluated and compared to the linear beamformer for the simulation and sea trial data.

Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship

  • Jang, Jinho;Choi, Soon Ho;Ahn, Sung-Mok;Kim, Booki;Seo, Jong Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.363-379
    • /
    • 2014
  • In an effort to cope with recent high oil price and global warming, developments of air lubricated ships have been pursued to reduce greenhouse gas emissions and to save fuel costs by reducing the frictional resistance. In this study, reduction in the frictional resistance by air lubrication with air layers generated on the lower surface of a flat plate was investigated experimentally in the large water tunnel of SSMB. The generated air layers were observed, and changes in the local frictional drag were measured at various flow rates of injected air. The results indicated that air lubrication with air layers might be useful in reducing the frictional resistance at specific conditions of air injection. Accordingly, resistance and self-propulsion tests for a 66K DWT bulk carrier were carried out in the towing tank of SSMB to estimate the expected net power savings.

Development of an Optimal Hull Form with Minimum Resistance in Still Water

  • Choi Hee-Jong;Kim Mun-Chan;Chun Ho-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • 제9권3호
    • /
    • pp.1-13
    • /
    • 2005
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) to search for optimized hull form and CFD(Computational Fluid Dynamics) technique. The friction resistance is estimated using the ITTC 1957 model-ship correlation line formula and the wave making resistance is evaluated using a potential-flow panel method based on Rankine sources with nonlinear free surface boundary conditions. The geometry of hull surface is represented and modified using B-spline surface patches during the optimization process. Using the Series 60 hull ($C_B$ =0.60) as a base hull, the optimization procedure is applied to obtain an optimal hull that produces the minimum total resistance for the given constraints. To verify the validity of the result, the original model and the optimized model obtained by the optimization process have been built and tested in a towing tank. It is shown that the optimal hull obtained around $13\%$ reduction in the total resistance and around $40\%$ reduction in the residual resistance at a speed tested compared with that of the original one, demonstrating that the present optimization tool can be effectively used for efficient hull form designs.

LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구 (Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water)

  • 오승훈;정동호;정재환;황성철;조석규;성홍근
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2019년도 춘계학술대회
    • /
    • pp.185-188
    • /
    • 2019
  • 본 논문에서는 LNG 벙커링 바지에 대한 예인안정성을 평가하였다. 친환경 에너지원인 LNG(액화천연가스)의 전환을 위한 인프라로 LNG 벙커링 바지가 개발되고 있다. LNG 벙커링 바지는 예인줄에 연결되어 이동하는 부선의 형태이기때문에 LNG 벙커링 바지의 예인안정성의 확보는 LNG 벙커링 바지 뿐만아니라 주변 항해 선박의 안전을 위해 매우 중요하다. LNG 벙커링 바지의 예인안정성을 초기 설계단계에서 추정하기 위해서 예인시뮬레이션을 위한 수치코드를 개발하였다. 초기설계단계에서 활용 가능하도록 운동방정식에는 조종수학그룹(MMG)모델이 적용되었고 조종미계수에는 경험식이 적용되었다. 개발된 수치코드의 유효성을 확인하기 위해 발표된 계산 및 모형시험의 결과와 비교하였다. 개발된 수치코드를 이용하여 LNG 벙커링 바지의 선미 스케그 유무에 따른 예인시뮬레이션을 수행하였다. 수행된 시뮬레이션을 통해 설계된 선미 스케그 면적의 적정성을 확인하였다.

  • PDF

Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions

  • Kim, Moon-Chan;Lee, Seung-Ki;Lee, Won-Joon;Wang, Jung-Yong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.116-131
    • /
    • 2013
  • The resistance performance of an icebreaking cargo vessel in pack ice conditions was investigated numerically and experimentally using a recently developed finite element (FE) model and model tests. A comparison between numerical analysis and experimental results with synthetic ice in a standard towing tank was carried out. The comparison extended to results with refrigerated ice to examine the feasibility of using synthetic ice. Two experiments using two different ice materials gave a reasonable agreement. Ship-ice interaction loads are numerically calculated based on the fluid structure interaction (FSI) method using the commercial FE package LS-DYNA. Test results from model testing with synthetic ice at the Pusan National University towing tank, and with refrigerated ice at the National Research Council's (NRC) ice tank, are used to validate and benchmark the numerical simulations. The designed ice-going cargo vessel is used as a target ship for three concentrations (90%, 80%, and 60%) of pack ice conditions. Ice was modeled as a rigid body but the ice density was the same as that in the experiments. The numerical challenge is to evaluate hydrodynamic loads on the ship's hull; this is difficult because LS-DYNA is an explicit FE solver and the FSI value is calculated using a penalty method. Comparisons between numerical and experimental results are shown, and our main conclusions are given.

소형 모형선을 이용한 실선마력추정에 대한 연구 (A Fundamental Study on the Power Prediction Method of Ship by using the Experiment of Small Model)

  • 하윤진;이영길
    • 대한조선학회논문집
    • /
    • 제51권3호
    • /
    • pp.231-238
    • /
    • 2014
  • In this study, the self-propulsion tests are performed in INHA towing tank. And the effective wake characteristics of the KVLCC2 and the KCS models are compared by the experimental results. The form factor is independent of Reynolds number. To estimate the hydrodynamic performance of a full scale ship, the form factor is determined to consider attendant on Reynolds number. In this research, the power predictions are carried out considering the form factor difference of model and full scale ship. The results of this research could be used as one of the fundamental data to the powering performance prediction.

6만 DWT 산적화물선(散積貨物船) 모형선-실선(模型船-實船) 상관해석(相關解析) (Correlation Analysis of Model Tests with Ship Powering Data for a 60,000 DWT Bulk Carrier)

  • 양승일;이창섭;김은찬
    • 대한조선학회지
    • /
    • 제19권4호
    • /
    • pp.61-70
    • /
    • 1982
  • The hydrodynamic effects on resistance and propulsive performance were studied by using the data from model test and full scale speed trials. A series of model tests on 3 geosims for a 60,000 DWT Bulk Carrier was conducted at KIMM's Ship Experimental Towing Tank and the results analyzed by 1978 ITTC Performance Prediction Method show the correlation between 3 geosim models. Also powering data of full scale speed trials were analyzed by the newly developed computer program and the correlation analysis between ship and model was studied.

  • PDF

선박의 트림 자세가 저항 성능에 미치는 영향 (Effects of Trim on Resistance Performance of a Ship)

  • 박동우;이상봉;정성섭;서흥원;권재웅
    • 대한조선학회논문집
    • /
    • 제50권2호
    • /
    • pp.88-94
    • /
    • 2013
  • The primary objective of the current work is to obviously analyze regarding effects of trim conditions of a ship on resistance performance using model test and CFD. Model tests at a towing tank are conducted to investigate resistance for trim conditions at the given same displacement. Measured resistance shows small but distinct differences according to trim conditions. However, these differences are difficult to be clarified by measured physical quantities and wave pattern analysis from model tests. CFD is employed for the assessment of resistance performance according to trim conditions. The flow computation is conducted considering free surface and dynamic trim using a commercial CFD code (STAR-CCM+). The initiative of the present work is to systematically demonstrate pressure resistance acting on each region of divided finite zones of ship surface along the length and draught direction of surface when pressure distribution on the ship is interpreted. Also, a standard to assess the pressure resistance applied on the divided regions of a ship is established.

CFD 저항 해석을 이용한 컨테이너선 최적 트림 추정법에 대한 연구 (Study on the Estimation of the Optimum Trims in Container Carriers by using CFD Analysis of Ship Resistances)

  • 박상훈;이상봉;이윤모
    • 대한조선학회논문집
    • /
    • 제51권5호
    • /
    • pp.429-434
    • /
    • 2014
  • The main objective of the present study is to elucidate a correlation between ship resistances from computational fluid dynamics (CFD) and brake horse powers (BHP) from towing tank in container carriers. The tests were conducted for a range of combinations of trim conditions and speeds. To achieve this goal, 295 cases of numerical simulation have been performed using Star-CCM+ which had been statistically verified to predict ship resistances (Lee & Lee, 2014). Based on the normal distribution of resistance errors in all cases of the 4 container carriers, the confidence interval of numerical error was estimated as [-2.33%,+2.42%] with 95% confidence. The correlation coefficients between the ship resistances of CFD and the brake horse powers of the experiments were higher than 0.93. As a result, the numerical calculation of ship resistances is able to be utilized in order to provide a quick guidance in selection of the optimum loading condition.