• 제목/요약/키워드: Towing Tank

검색결과 266건 처리시간 0.022초

선박설계를 위한 계산유체역학의 활용에 대하여 (The Application of CED for Ship Design)

  • 김우전
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.5-8
    • /
    • 2002
  • The issues associated with the application of CFD for ship design are addressed. It is quite certain that the CFD tools are very useful in evaluating hull forms a prior to traditional towing tank tests. However, the time-consuming pre-processing is an obstacle in the daily application of CFD tools to improve hull forms. The accuracy of computational modeling without sacrificing the usability of CFD system is also to be assessed. The wave generation is still predicted by using potential panel methods, while velocity profiles entering into propeller plane is solved using turbulent flow solvers. The choice of turbulence model is a key to predict nominal wake distribution within acceptable accuracy. The experimental data for CFD validation are invaluable to improve physical and numerical modeling. Other applications of CFD for ship design than hull form improvement are also given. It is certain that CFD can be a cost-effective tool for the design of new and better ships.

  • PDF

An Experimental Evaluation of the Coanda Jet Applied High Efficient Rudder System for VLCC

  • Park, Bong-Joon;Kim, Hyo-Chul
    • Journal of Ship and Ocean Technology
    • /
    • 제8권2호
    • /
    • pp.1-12
    • /
    • 2004
  • To keep the ocean environment from pollutions, strict international requirements on the controllability are arisen to the VLCC. Especially in low speed operations near the harbor, the VLCC is often supported by tug to replenish the insufficient rudder force. When water jet is blown to the flapped rudder, the Coanda effect induces a high-lift force by delaying stall and re-enforcing circulation in a large angle of attack (Lachmann 1961, Ahn 2003). Based on numerous research efforts, the rudder system supported by the Coanda effect was devised and its performances were evaluated in the towing tank for a large VLCC model. Hydrodynamic forces acting on the rudder system were measured with a water jet blowing on the rudder surface and compared with those acting on a conventional rudder. The effectiveness of the new rudder system was proven through an experimental evaluation.

Numerical Simulation of Directional Spreading Characteristics in a Snake Type Wave Generator considering Side Wall Reflection

  • Lee, Jin-Ho;Hirayama, Tsugukiyo
    • Journal of Ship and Ocean Technology
    • /
    • 제4권1호
    • /
    • pp.28-36
    • /
    • 2000
  • Numerical simulation based on the superposition of ring waves generated by the linear periodic source distributions for the plunger type wave maker was accomplished. The characteristics of directional spreading function were investigated. Mirror images are also introduced to consider reflections of side-wall together with the reflection coefficient to account for the imperfect reflection from the real side wall in the long experimental towing tank. Unexpected spurious waves, resulting from the combined effect of finite breadth of segmented wave maker, wavelength and main wave maker, wavelength and main wave propagating direction, were observed in the line source method and also in the analysis of the directivity. The influence of spurious waves to the directional spreading function was also investigated.

  • PDF

소형 모형선을 이용한 실선마력추정에 대한 연구 (A Fundamental Study on the Power Prediction Method of Ship by using the Experiment of Small Model)

  • 하윤진;이영길
    • 대한조선학회논문집
    • /
    • 제51권3호
    • /
    • pp.231-238
    • /
    • 2014
  • In this study, the self-propulsion tests are performed in INHA towing tank. And the effective wake characteristics of the KVLCC2 and the KCS models are compared by the experimental results. The form factor is independent of Reynolds number. To estimate the hydrodynamic performance of a full scale ship, the form factor is determined to consider attendant on Reynolds number. In this research, the power predictions are carried out considering the form factor difference of model and full scale ship. The results of this research could be used as one of the fundamental data to the powering performance prediction.

Optimization of drag reduction effect of air lubrication for a tanker model

  • Park, Seong Hyeon;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권4호
    • /
    • pp.427-438
    • /
    • 2018
  • The reduction of $CO_2$ emissions has been a key target in the marine industry since the IMO's MEPC published its findings in 2009. Air lubrication method is one of the mature technologies for commercialization to reduce the frictional resistance and enhance fuel efficiency of ships. Air layer is formed by the coalescence of the injected air bubbles beyond a certain air flow rate. In this study, a model ship (${\lambda}=33.33$) of a 50,000 ton medium range tanker is equipped with an air lubrication system. The experiments were conducted in the 100 m long towing tank facility at the Pusan National University. By selecting optimal air injector configuration and distribution ratio between two injectors, the total resistance of model $R_{TM}$ was able to be reduced down to 18.1% in the model scale. Key issue was found to suppress the sideway leakage of injected air by appropriate injection parameters.

The estimations of planing hull running attitude and resistance by using CFD and Goal Driven Optimization

  • ZHANG, Qi;KIM, Dong-Joon
    • 수산해양기술연구
    • /
    • 제51권3호
    • /
    • pp.285-294
    • /
    • 2015
  • As a "kind of" mature ship form, planing hull has been widely used in military and civilian areas. Therefore, a reasonable design for planing hull becomes more and more important. For planing hull, resistance and trim are always the most important problems we are concerned with. It affects the planing hull's economic efficiency and maneuverability very seriously. Instead of the expensive towing tank experiments, the development of computer comprehensive ability allows us to previously apply computational fluid dynamics(CFD)to the ship design. In this paper, the CFD method and Goal Driven Optimization (GDO) were used in the estimations of planing hull resistance and running attitude to provide a possible method for performance computation of planing hull.

설계불규칙파중에서 선박의 횡동요에 관한 연구 (A Study on the Roll Motion of a Ship in a Transient Irregular Wave)

  • 한주철;이승건;하태필
    • 한국항해항만학회지
    • /
    • 제28권5호
    • /
    • pp.353-358
    • /
    • 2004
  • ISSC 스팩트럼을 기초로 종래의 불규칙파가 아닌 새로울 과도 불규칙파를 설계하였다. 이 설계불규칙파를 장수조에서 조파기를 사용하여 발생시키고, 파고계와 6자유도계를 설치하여서 모형선의 횡동요 운동을 계측하였다. 모형선의 최대 횡동요각의 실험값과 이론값을 비교하여 단기 해상에서 발생 가능한 횡동요 피크치를 추정하는 방법에 관하여 검토하였다.

Performance evaluation of an underwater body and pumpjet by model testing in cavitation tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권2호
    • /
    • pp.57-67
    • /
    • 2010
  • Experimental investigations were carried out on an Axi-symmetric Body Model fitted with Pump-jet Propulsor (PJP) in the Cavitation Tunnel at Naval Science and Technological Laboratory (NSTL). The tests were intended for evaluating the propulsion characteristics of the body and propulsor. The self propulsion point of the model for two configurations was determined after finding the corrections for tunnel blockage effects and differences in model length at zero trim. The results were found to match closely with the towing tank results. The rotor and stator torques also matched closely over full range of experiment. Further experiments were carried out on the body at $4.5^{\circ}$ angle of trim to investigate the propulsive performance and assess the operational difficulties in the sea. The results indicated an increase in resistance and decrease in rotor thrust; but the balance of torques between the rotor and stator was undisturbed, causing no concern to vehicle roll.

Twin-skeg형 컨테이너선 주위의 격자계 생성과 유동 해석 (Grid Generation and flow Analysis around a Twin-skeg Container Ship)

  • 박일룡;김우전;반석호
    • 대한조선학회논문집
    • /
    • 제41권1호
    • /
    • pp.15-22
    • /
    • 2004
  • Twin-skeg type stern shapes are recently adopted for very large commercial ships. However it is difficult to apply a CFD system to a hull form having twin-skeg, since grid topology around a twin-skeg type stern is more complicated than that of a conventional single-screw ship, or of an open-shaft type twin-screw ship with center-skeg. In the present study a surface mesh generator and a multi-block field grid generation program have been developed for twin-skeg type stern. Furthermore, multi-block flow solvers are utilized for potential and viscous flow analysis around a twin-skeg type stern The present computational system is applied to a 15,000TEU container ship with twin-skeg to prove the applicability. Wave profiles and wake distribution are calculated using the developed flow analysis tools and the results are compared with towing tank measurements.

자성유체를 이용한 유회수선박의 선형연구 (A Study of the Hull Form of Oil Recovery Vessel by Using Magnetic Fluid)

  • 이귀주;박영식;김경화;노준혁;장희문
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.1-5
    • /
    • 2001
  • A study on the new active type oil-water separation system including the oil-water separation system of magnetic film was carried out. Separation system is composed of several active types of circulating oil separation steps and one magnetic film separation step at final stage. At the magnetic separation step, ferrofluid easily forms a weak magnetic mixture with oil, which is from the water by magnetic field gradient. The vessel has been designed to run at the maximum speed of 25 knots. And two typical forms of SWATH and Catamaran have been studied as a new type of oil recovery vessel.

  • PDF