• Title/Summary/Keyword: Tourist Attractions Recommendation

Search Result 16, Processing Time 0.024 seconds

Deep Learning-based Tourism Recommendation System using Social Network Analysis

  • Jeong, Chi-Seo;Ryu, Ki-Hwan;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.113-119
    • /
    • 2020
  • Numerous tourist-related data produced on the Internet contain not only simple tourist information but also diverse ideas and opinions from users. In order to derive meaningful information about tourist sites from such big data, the social network analysis of tourist keywords can identify the frequency of keywords and the relationship between keywords. Thus, it is possible to make recommendations more suitable for users by utilizing the clear recommendation criteria of tourist attractions and the relationship between tourist attractions. In this paper, a recommendation system was designed based on tourist site information through big data social network analysis. Based on user personality information, the types of tourism suitable for users are classified through deep learning and the network analysis among tourist keywords is conducted to identify the relationship between tourist attractions belonging to the type of tourism. Tour information for related tourist attractions shown on SNS and blogs will be recommended through tagging.

AR Tourism Recommendation System Based on Character-Based Tourism Preference Using Big Data

  • Kim, In-Seon;Jeong, Chi-Seo;Jung, Tae-Won;Kang, Jin-Kyu;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • The development of the fourth industry has enabled users to quickly share a lot of data online. We can analyze big data on information about tourist attractions and users' experiences and opinions using artificial intelligence. It can also analyze the association between characteristics of users and types of tourism. This paper analyzes individual characteristics, recommends customized tourist sites and proposes a system to provide the sacred texts of recommended tourist sites as AR services. The system uses machine learning to analyze the relationship between personality type and tourism type preference. Based on this, it recommends tourist attractions according to the gender and personality types of users. When the user finishes selecting a tourist destination from the recommendation list, it visualizes the information of the selected tourist destination with AR.

Recommendation of tourist attractions based on Preferences using big data

  • KIM HYUN SEOK;Gi-hwan Ryu;kim im yeo-reum
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.327-331
    • /
    • 2023
  • This paper proposes a tourist destination recommendation application that combines a chatbot and a recommendation system. The data to be entered into the chatbot was through big data on social media. Through TEXTOM, a total of 22,701 data were collected over a one-year period from January 2022 to January 2023. Non-terms that interfere with analysis were removed through the data purification process. Using refined data, network visualization and CONCOR analysis were used to identify the information users want to obtain about travel to Jeju Island, and categories for each cluster were organized. The content was intuitively organized so that even those who approached it for the first time could easily use it, reducing the difficulty of operating the application. In this paper, users can select their own preferences and receive information. In addition, a tool called a chatbot allows users to focus more on the process of acquiring information by gaining a sense of reality while operating the application. This suggests an application that can reach the purpose of the curator by affecting the user's desire to visit tourist attractions.

Automatic Recommendation of Nearby Tourist Attractions related to Events (이벤트와 관련된 주변 관광지 자동 추천 알고리즘 개발)

  • Ahn, Jinhyun;Im, Dong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.407-413
    • /
    • 2020
  • Participating in exhibitions is one of the major activities for tourists. When selecting their next travel destination after participating in an event, they use map services and social network services, such as blogs, to obtain information about tourist attractions. The map services are location-based recommendations, because they can easily retrieve information regarding nearby places. Blogs contain informative content about tourist attractions, thereby providing content-based recommendations. However, few services consider both location and content. In location-based recommendations, tourist attractions that are not related to the content of the event attended might be recommended. Content-based recommendation has a disadvantage in that events located at a distance might get recommended. We propose an algorithm that considers both location and content, based on information from the Korea Tourism Organization's Linked Open Data (LOD), Wikipedia, and a Korean dictionary. By extracting nouns from the description of a tourist attraction and then comparing them with nouns about other attractions, a content-based relationship is determined. The distance to the event is calculated based on the latitude and longitude of each tourist attraction. A weight selected by the user is used for linear combination with the content-based relationship to determine the preference order of the recommendations.

Big Data based Tourist Attractions Recommendation - Focus on Korean Tourism Organization Linked Open Data - (빅데이터 기반 관광지 추천 시스템 구현 - 한국관광공사 LOD를 중심으로 -)

  • Ahn, Jinhyun;Kim, Eung-Hee;Kim, Hong-Gee
    • Management & Information Systems Review
    • /
    • v.36 no.4
    • /
    • pp.129-148
    • /
    • 2017
  • Conventional exhibition management information systems recommend tourist attractions that are close to the place in which an exhibition is held. Some recommended attractions by the location-based recommendation could be meaningless when nothing is related to the exhibition's topic. Our goal is to recommend attractions that are related to the content presented in the exhibition, which can be coined as content-based recommendation. Even though human exhibition curators can do this, the quality is limited to their manual task and knowledge. We propose an automatic way of discovering attractions relevant to an exhibition of interests. Language resources are incorporated to discover attractions that are more meaningful. Because a typical single machine is unable to deal with such large-scale language resources efficiently, we implemented the algorithm on top of Apache Spark, which is a well-known distributed computing framework. As a user interface prototype, a web-based system is implemented that provides users with a list of relevant attractions when users are browsing exhibition information, available at http://bike.snu.ac.kr/WARP. We carried out a case study based on Korean Tourism Organization Linked Open Data with Korean Wikipedia as a language resource. Experimental results are demonstrated to show the efficiency and effectiveness of the proposed system. The effectiveness was evaluated against well-known exhibitions. It is expected that the proposed approach will contribute to the development of both exhibition and tourist industries by motivating exhibition visitors to become active tourists.

  • PDF

New Mathematical Model for Travel Route Recommendation Service (여행경로 추천 서비스를 위한 최적화 수리모형)

  • Hwang, Intae;Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.99-106
    • /
    • 2017
  • With the increased interest in the quality of life of modern people, the implementation of the five-day working week, the increase in traffic convenience, and the economic and social development, domestic and international travel is becoming commonplace. Furthermore, in the past, there were many cases of purchasing packaged goods of specialized travel agencies. However, as the development of the Internet improved the accessibility of information about the travel area, the tourist is changing the trend to plan the trip such as the choice of the destination. Web services have been introduced to recommend travel destinations and travel routes according to these needs of the customers. Therefore, after reviewing some of the most popular web services today, such as Stubby planner (http://www.stubbyplanner.com) and Earthtory (http://www.earthtory.com), they were supposed to be based on traditional Traveling Salesman Problems (TSPs), and the travel routes recommended by them included some practical limitations. That is, they were not considered important issues in the actual journey, such as the use of various transportation, travel expenses, the number of days, and lodging. Moreover, although to recommend travel destinations, there have been various studies such as using IoT (Internet of Things) technology and the analysis of cyberspatial Big Data on the web and SNS (Social Networking Service), there is little research to support travel routes considering the practical constraints. Therefore, this study proposes a new mathematical model for applying to travel route recommendation service, and it is verified by numerical experiments on travel to Jeju Island and trip to Europe including Germany, France and Czech Republic. It also expects to be able to provide more useful information to tourists in their travel plans through linkage with the services for recommending tourist attractions built in the Internet environment.

A Study on the Scope for Special Interest Tourism Based Services in India

  • Selvakumar, J. Joshua
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.2 no.4
    • /
    • pp.56-64
    • /
    • 2014
  • Today, travelers are provided large amount information which includes Web sites and tourist magazines about introduction of tourist spot. Many approaches have been proposed to analyze the large amount of available information with the aim of discovering the most popular Points of Tourist Interest and routes. However, it is not easy for users to process the information in a short time. Therefore travelers prefer to receive pertinent information easier and have that information presented in a clear and concise manner. Whether you are looking for banks by company, foreign exchange services, free wireless hotspots, touristic attractions, campsites, supermarkets, restaurants, cinemas, The aim of POI Tourism Services is to enable tourists to find spots that only the locals know, giving the tourists opportunity to the tourists to explore new areas of the place like never before. This paper proposes find the scope for a personalized service for tourist "Special Interest Tourism" recommendation for tourists who travel within India & for the benefit of Foreign Nationals who visit the country. The major focus of the study is to understand the demand for such a service being integrated into the conventional tour package. The major findings made during the course of the show that the market for "Special Interest Tourism" based services stands at approximately 63%. Travel today is mainly for the people from the middle income group having a fixed budget while traveling and would like economic travel solutions that fit their budget. This accounts for a major part of the market for the service. Most tourist prefer to go on week end getaways or trips that last more than a week, this means that a specialized trip plan based on the travelers interests is feasible with these type of travelers. Maximum demand for "Special Interest Tourism" based services would be during the festive seasons.

A Study on the Scope for Special Interest Tourism based Services in India

  • Selvakumar, J. Joshua
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.1 no.2
    • /
    • pp.29-41
    • /
    • 2013
  • Purpose: Today, travelers are provided large amount information which includes Web sites and tourist magazines about introduction of tourist spot. Many approaches have been proposed to analyze the large amount of available information with the aim of discovering the most popular Points of Tourist Interest and routes. However, it is not easy for users to process the information in a short time. Therefore travelers prefer to receive pertinent information easier and have that information presented in a clear and concise manner. Research Design, Data and Methodology: Whether you are looking for banks by company, foreign exchange services, free wireless hotspots, touristic attractions, campsites, supermarkets, restaurants, cinemas, The aim of POI Tourism Services is to enable tourists to find spots that only the locals know, giving the tourists opportunity to the tourists to explore new areas of the place like never before. This paper proposes find the scope for a personalized service for tourist "Special Interest Tourism" recommendation for tourists who travel within India & for the benefit of Foreign Nationals who visit the country. Results: The major focus of the study is to understand the demand for such a service being integrated into the conventional tour package. The major findings made during the course of the show that the market for "Special Interest Tourism" based services stands at approximately 63%. Travel today is mainly for the people from the middle income group having a fixed budget while traveling and would like economic travel solutions that fit their budget. Conclusion: This accounts for a major part of the market for the service. Most tourist prefer to go on week end getaways or trips that last more than a week, this means that a specialized trip plan based on the travelers interests is feasible with these type of travelers. Maximum demand for "Special Interest Tourism" based services would be during the festive seasons.

Study on Curator of Tourist Attractions using Chatbot (관광지 교육을 위한 교육용 챗봇 큐레이터)

  • Park, Jong-hyun;Kim, Im-yeoreum;Ryu, Gi-Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.303-308
    • /
    • 2022
  • A chatbot is a responsive chatting program that can communicate with people through text or voice. 'Siri' and 'Bixby' installed in smartphones are also representative artificial intelligences that use the chatbot system. With the rapid development of chatbots, users in various fields have also begun to pay attention to the food service industry. As machine learning technology developed, it became possible to use more flexible conversations, and it soon expanded to the realm of education. Userㄴs interact through conversations with chatbots, and active interactions stimulate users' desires and at the same time have a positive effect on learning motivation. Recommendation system programs using chatbots not only recommend products according to users' preferences, but also provide various additional information. This study planned a program that combined the chatbot system and tourism service. The chatbot curator will develop into a form of inducing interest and curiosity to users through learning, and then facilitating the desire for tourism. The purpose of this study is to lay the foundation for a chatbot curator based on previous studies.

Study on Curator of Tourist Attractions using Chatbot (관광지 교육을 위한 교육용 챗봇 큐레이터)

  • Park, Jong-hyun;Kim, Im-yeoreum;Ryu, Gi-Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.843-848
    • /
    • 2022
  • A chatbot is a responsive chatting program that can communicate with people through text or voice. 'Siri' and 'Bixby' installed in smartphones are also representative artificial intelligences that use the chatbot system. With the rapid development of chatbots, users in various fields have also begun to pay attention to the food service industry. As machine learning technology developed, it became possible to use more flexible conversations, and it soon expanded to the realm of education. Userㄴs interact through conversations with chatbots, and active interactions stimulate users' desires and at the same time have a positive effect on learning motivation. Recommendation system programs using chatbots not only recommend products according to users' preferences, but also provide various additional information. This study planned a program that combined the chatbot system and tourism service. The chatbot curator will develop into a form of inducing interest and curiosity to users through learning, and then facilitating the desire for tourism. The purpose of this study is to lay the foundation for a chatbot curator based on previous studies.