• Title/Summary/Keyword: Touch controller

Search Result 57, Processing Time 0.038 seconds

A Wireless Temperature Control System based on FPGA (FPGA기반의 무선 온도 제어 시스템)

  • Park, Jeong-Wook;Ko, Joo-Young;Park, Jong-Hun;Hong, Mun-Ho;Lee, Yeung-Hak;Shim, Jae-Chang
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.7
    • /
    • pp.920-930
    • /
    • 2012
  • In this paper, we designed and built a wired temperature controller system which is based on ASIC for a wireless temperature controller system based on FPGA. FPGA devices and wireless controller systems are growing quickly especially for industrial systems for sensing temperature and humidity. FPGA can set up a desired system and a CPU, and directly set up or change a peripheral device based on an IP quickly for an affordable price. This wireless system is easy to install in the field where there are lots of changes and the system is complex. It also has advantages for maintenance. In this study, we are using a 32 bit RISC CPU based on MicroBlaze, with a touch interface, peripheral device, and porting the embedded Linux. Also, we added wireless communication using ZigBee. With this system we provide remote monitoring and control through the web by adding a web server. Compared to the original system, we say not only a performance improvement, but also more efficient development and cheaper costs. In this study, we focused especially on building a better development environment and a more effective user interface.

Design of a Small-Area, Low-Power, and High-Speed 128-KBit EEPROM IP for Touch-Screen Controllers (터치스크린 컨트롤러용 저면적, 저전력, 고속 128Kb EEPROMIP 설계)

  • Cho, Gyu-Sam;Kim, Doo-Hwi;Jang, Ji-Hye;Lee, Jung-Hwan;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2633-2640
    • /
    • 2009
  • We design a small-area, low-power, and high-speed EEPROM for touch screen controller IC. As a small-area EEPROM design, a SSTC (side-wall selective transistor) cell is proposed, and high-voltage switching circuits repeated in the EEPROM core circuit are optimized. A digital data-bus sensing amplifier circuit is proposed as a low-power technology. For high speed, the distributed data-bus scheme is applied, and the driving voltage for both the EEPROM cell and the high-voltage switching circuits uses VDDP (=3.3V) which is higher than the logic voltage, VDD (=1.8V), using a dual power supply. The layout size of the designed 128-KBit EEPROMIP is $662.31{\mu}m{\times}1314.89{\mu}m$.

Development of an Inexpensive Black Box with Transmission of SOS and Theft Signal for an Agricultural Tractor (도난방지 및 구조신호 전송기능이 있는 저가형 농용트랙터 블랙박스 개발)

  • Kim, YuYong;Shin, Seung-Yeoub;Kim, Byounggap;Kim, Hyung Kweon;Cho, Yongho;Kim, Jinoh
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.352-358
    • /
    • 2012
  • Purpose: The inexpensive black box system was developed to acquire and save driving information, to give the slope information, and to transmit SOS and theft signal. Method: The device consists of a main micro controller to acquire and save data, a GPS sensor module, a CDMA module, a touch LCD module, a RF (Radio Frequency) ID module, a SD (Secure Digital) card module, an emergency electric power source, a theftproof circuit, and a sensing device. The sensing device consists of a 8 bit micro controller, a accelerometer to detect impulse, two slope sensors to detect roll and pitch angle and a circuit to detect operation of 6 lighting devices. Results: Test results are as follows: 1) a tractor can be start up only with an electronic key (password or RFID card), 2) theft signal was transmitted when a tractor moved without an electronic key, 3) SOS was transmitted at conditions that rollover or crash happened. 4) 5 more than per 1s data are recorded at 5 minute intervals as new file name in SD card. Conclusions: This system can be used to save travelling record, reduce accident, prevent theft and rescue life in the accidents.

Compensation of Thermal Errors for the CNC Machine Tools (II) - Analysis of Error Compensation Algorithm for the PC-NC Controller - (CNC 공작기계의 열변형 오차 보정 (II) - PC-NC제어기용 오차보정 알고리즘 분석 -)

  • 이재종;최대봉;박현구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.214-219
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been presented in order to compensate thermal error of machine tools under the real-time. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

An Effect of Air Traffic Controllers' Emotional Regulation to Their Job Involvement and Organizational Loyalty (항공교통관제사의 감정통제가 직무몰입과 조직충성도에 미치는 영향)

  • Kim, Sang Soo;Kim, Kee Woong;Choi, Jin Young;Lee, Myung Woo;Choi, Youn Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.53-61
    • /
    • 2016
  • Air Traffic Controllers (ATC) are also essential to the efficiency of airports and the airline industry. With the increasing volume of traffic, managing flights is a complex and sometimes very stressful job. ATC is using radar and other technology to track planes 'en route' between airports and keep in touch with pilots. Alternatively, ATCs are liaising with the planes on approach. However, ATC's working condition is getting more stressful, as the volume of air traffic increases. Thus this paper tried to research cognitive emotional regulation, job satisfaction, and job involvement and organizational committment of ATCs under the stressful work condition, taking care of safety of a couple of hundreds passengers per plane. Using CERQ survey sheet (Cognitive Emotional Regulation Questionnaire), it was found out that positive thinking and acceptance of self-blame have a significant impact on job satisfaction, work absorption and organizational Loyalty.

A Vibrotactile, Kinesthetic, and Thermal device for Developmental Disorder Children (발달장애아동을 위한 진동감, 굳기감, 온열감 장치)

  • Im, Tami;Yoon, Inho;Kim, Sang-Youn;Jeong, Goo-cheol
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1435-1441
    • /
    • 2017
  • The primary goals of this paper are to design an interactive education platform conveying a variety of haptic sensations to developmental disorder children when they touch the education platform. The proposed interactive education platform is composed of a kinesthetic module, a vibrotactile module, a thermal module. and a controller. The design focuses of the proposed education platform were to create sufficiently large kinesthetic forces, vibrations, and temperatures and to convey them to users. We have conducted experiments for evaluating the proposed system and found out three modules function safely and effectively as an educational platform.

Evacuation characteristic measurement of anti-suck back centering by mini vacuum system (미니 진공시스템을 이용한 역류방지 센터링의 배기 특성 측정)

  • Hong, Gwang-Gi;Go, Seok-Il;Do, U-Ri;Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.255-256
    • /
    • 2009
  • The anti suck back centering (ASBC) for preventing backflow of oil for oil rotary pump was designed in the power failure. To evaluate the evacuation characteristics, we manufactured the mini vacuum system, personal computer, AD converter (National instrument, NI-6009), and automatic controller with touch panel for a basis. In this study, we measured the evacuation characteristics of ABSC and analyzed the flow field of viscous flow regime using a commercial software, CFD-ACE+. Also, the leakage of the advaced ASBC for leveling was measured.

  • PDF

An Automated Machining System for Steel Flat Bar Plasma Cutting in the Small Sized Shipbuilding Industry (중소조선용 철의장 가공자동화시스템 개발)

  • Ryu, Gab-Sang;Lee, Won-Hoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.852-857
    • /
    • 2011
  • The shipbuilding industry needs automation and mechanization to solve reduction of skilled workers and labor shortage. Ship manufacturing process is the lack of automation than standardized manufacturing field. In this paper, we design and development an process automation system for hand rail production. Mechanical parts of the cutting process was designed with efficiency, productivity and reliability, CATIA and ANSYS, the stability of the mechanical structure was confirmed. System control using a PCNC controller to provide an open and scalable, and operate using touch-screen display control and monitoring of the system was performed. The automatic system successfully passed the driving test and processing test, and it showed an excellent performance.

Modeling and Measurement of Thermal Errors for Machining Center using On-Machine Measurement System (기상계측 시스템을 이용한 머시닝센터의 열변형 오차 모델링 및 오차측정)

  • 이재종;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.120-128
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of $\pm$2${\mu}{\textrm}{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be improved by using the developed measurement system when the spherical ball artifact is mounted on the modular fixture.

  • PDF

Research and development of haptic simulator for Dental education using Virtual reality and User motion

  • Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.52-57
    • /
    • 2018
  • The purpose of this paper is to develop simulations that can be used for virtual education in dentistry. The virtual education to be developed will be developed with clinical training and actual case data of tooth extraction. This development goal is to allow dental students to learn the necessary surgical techniques at the point of their choice, not going into the operating room, away from time, space, and physical limits. I want to develop content using VR. Oculus Rift HMD, Optical Based Outside-in Tracking System, Oculus Touch Motion Controller, and Headset as Input / Output Device. In this configuration, the optimization method is applied convergent, and when the operation of the VR contents is performed, the content data is extracted from the interaction analysis formed in the VR engine, and the data is processed by the content algorithm. It also computes events and dental operations generated within the 3D engine programming and generates corresponding events through data processing according to the input signal. The visualization information is output to the HMD using the rendering information. In addition, the operating room environment was constructed by studying lighting and material for actual operating room environment. We applied the ratio of actual space to virtual space and the ratio between character and actual person to create a spatial composition at a similar rate to actual space.