• Title/Summary/Keyword: Total root length

Search Result 374, Processing Time 0.028 seconds

Effect of automobile polluted soil on early seedling growth performance of Neem (Azadirachta indica A. Juss.)

  • Parveen, Shagufta;Iqbal, Muhammad Zafar;Shafiq, Muhammad;Athar, Mohammad
    • Advances in environmental research
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Effect of automobile polluted soil with five soil concentration (0 (Control), 25, 50, 75 and 100%) was observed on early seedling growth performance and biomass production of Neem (Azadirachta indica A. Juss). The treatment of 75% automobile polluted soil significantly (p < 0.05) decreased the seedling length (18.60 cm) of A. indica. The automobile polluted soil treatment with the concentration of 50% slightly increased the root length as compared to control. The automobile polluted soil treatment with the concentration of 25, 50, 75 and 100% negatively affected shoot length of A. indica as compared to control. The treatment of all concentration of automobile polluted soil progressively decreased the total leaf area A. indica as compared to control soil treatment. The automobile polluted soils also showed negative effects on biomass production of A. indica. The automobile polluted soil treatment at 25% concentration significantly (p < 0.05) affected shoot, leaves and seedling dry weight of A. indica as compared to control soil treatment. The order of relationship between production of A. indica's seedling dry weight and automobile polluted soil treatment was observed as root > shoot > leaves > total seedling.

Effectiveness on the Inoculation of Arbuscular Mycorrhizal Fungi in Cutting of Grapevine (포도 삽목에서 내생 균근균 접종효과)

  • Wee, Chi-Do;An, Gi-Hong;Kim, Hong-Lim;Sohn, Bo-Kyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.1002-1007
    • /
    • 2010
  • The study was performed to investigate the influence on growth and development of grape-cuttings by arbuscular mycorrhizal (AM) fungi inoculation, AM colonization rate, and the phenomena of mycorrhizal association. Among the grape-cuttings, 'Kyoho' and 'Tamnara' cultivars inoculated with AM fungi showed significantly increase of leaf area, leaf number, total root length and root surface area than non-infected ones. But 'Cambell Early' did not showed any significant difference in total root length and root surface area even after the inoculation. The AM colonization rates in mycorrhizal inoculation treatment were 22.5-32.5% in total average after 8weeks, and were 29.6%, 28.8%, and 48.8% for 'Cambell Early', 'Tamnara', and 'Kyoho' respectively after 12weeks. The AM colonization rate marked very low level in non-colonization control plot.

Effectiveness of Arbuscular Mycorrhizal Fungi (AMF) Inoculation on the Growth of Perilla

  • Wee, Chi-Do;Sohn, Bo-Kyoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.408-416
    • /
    • 2010
  • To evaluate the effectiveness of AMF on the growth of horticultural crops, we compared mycorrhizal and non-mycorrhizal plants, perilla (P. frutescens Britt.), that were inoculated with AMF propagules. In the early stages of growth of perilla, compared to the AMF- perilla seedlings, in AMF+ perilla seedlings at 3 weeks after sowing, leaf length and width increased 17% and 29%, leaf area increased 28%, and shoot fresh weight increased 33%, root total length increased 1%, and chlorophyll content increased 3%. Further at 10 weeks after sowing, compared to the AMF- perilla plants, in perilla plants inoculated with AMF at the sowing and transplanting stages, leaf area increased 21% and 19%, shoot length increased 19% and 17%, root fresh weight increased 17% and 20%, and chlorophyll content increased 5.1% and 4.8%, respectively. Moreover, at 14 weeks after sowing, compared to the AMFperilla plants, in perilla plants inoculated with AMF at the sowing and transplanting stages, the number of leaves increased 16% and 20%, root fresh weight increased 16% and 17% significantly. Further, leaf fresh weight increased 9% and 11%, shoot diameter increased 4.5% and 7.3%, and chlorophyll content increased 1.5% and 2.5%, respectively. The levels of many macronutrients and micronutrients were tended to be significantly higher in AMF+ plants than in AMF- plants, supporting the association between AMF and enhanced growth of plants grown from AMF+ seedlings.

Pine Forest Soil Characteristics and Major Soil Impact Factors for Natural Regeneration

  • Kim, Min-Suk;Kim, Yong-Suk;Min, Hyun-Gi;Kim, Jeong-Gyu;Koo, Namin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.3
    • /
    • pp.179-186
    • /
    • 2017
  • This study was conducted to identify characteristics of domestic pine forest soils and to elucidate major soil influencing factors for natural regeneration. We analyzed the physico-chemical characteristics of the soil samples collected from 23 pine forests and confirmed the similar results with the forest soil characteristics. Soil pH, organic matter content, total nitrogen, exchangeable Ca, silt content, and exchangeable Al were selected as the major soil factors among the exposed soils through 10 days of pine seedlings exposure and cultivation experiments and statistical analysis. Multiple regression analysis showed that soil pH had a positive effect on specific root length (SRL) of red pine seedlings and exchangeable Al was a significant factor affecting negative change in SRL. Taken together, the reduction of exchangeable Al by soil pH adjustment would be helpful for natural regeneration by restoring the forest and improving the fine root and root integrity of pine seedlings. Therefore, soil pH and exchangeable Al could be recommended as a major soil factor to be carefully considered in the monitoring and management of soil in pine forests that need to be renewed in the future.

Comparison of Growth Increment and Ginsenoside Content in Different Parts of Ginseng Cultivated by Direct Seeding and Transplanting (직파와 이식재배에 따른 인삼의 부위별 생육특성 및 진세노사이드 함량 비교)

  • Li, Xiangguo;Kang, Sun-Joo;Han, Jin-Soo;Kim, Jung-Sun;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.2
    • /
    • pp.70-73
    • /
    • 2010
  • This study was carried out to clarify the difference of growth characteristics and ginsenoside content in 5-year-old ginseng root grown by direct seeding and transplanting cultivation. Root weight per plant of direct seeding cultivation was lower than that of transplanting cultivation. Fresh and dry matter partitioning ratio of direct seeding cultivation was high in main root and low in lateral because direct seeding cultivation root elongated the length of main root, while it suppressed the growth of lateral root. Total amount of ginsenoside contents by direct seeding and transplanting cultivation were 362.8 and 320.3 mg in main root, 188.6 and 548.8 mg in lateral root, 170.7 and 273.8 mg in fine root. Its contents of whole root per plant were 722.1 and 1142.9 mg by direct seeding and transplanting, respectively.

Effect of cultivars on hairy root induction and glucosinolate biosynthesis in a hairy root culture of Kimchi cabbage (Brassica rapa L. ssp. Pekinensis

  • Sang Un Park;Sook Young Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.1
    • /
    • pp.51-60
    • /
    • 2022
  • Cruciferous vegetables are rich in biologically active compounds such as glucosinolates and have various health benefits. Among these vegetables, Kimchi cabbage (Brassica rapa L. ssp. Pekinensis) is one of the most popular leafy vegetables due to the presence of the highest amounts of numerous vital phytonutrients, minerals, vitamins, and antioxidants. This study aims to investigate the effects of six cultivars (Chundong 102, Asia No Rang Mini, Hwimori Gold, Asia Seoul, Wol Dong Chun Chae, and Asia Bbu Ri) on hairy root induction and glucosinolate biosynthesis in the hairy root cultures of Kimchi cabbage. Seven different glucosinolates, in this case sinigrin, gluconapin, glucoerucin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin, were detected in the hairy root cultures of Kimchi cabbage. Among the different cultivars, Asia No Rang Mini was the most promising candidate for hairy root stimulation, as it achieved the highest values for the growth rate, root number, root length, transformation efficiency, and total glucosinolate content. Overall, the Asia No Rang Mini cultivar of Kimchi cabbage performed best as a promising cultivar hairy root culture for glucosinolate production.

The Effects of the length of Electrical Stimulation Treatment Time on the Yield Components and $NO_3^-$ Content in Edible Parts in 2 Cherry Type Radishes(Raphanus salivas L.). (電氣刺戟 處理時間이 赤丸20일 무의 收量形質 및 可食部內 $NO_3^-$含量에 미치는 影響)

  • 권오달
    • Korean Journal of Organic Agriculture
    • /
    • v.10 no.1
    • /
    • pp.65-74
    • /
    • 2002
  • The results of the experiment about the effect of the length of electrical stimulation treatment time on the yield components and NO$_3$ content in edible parts of 2 cherry type radishes(Raphanus salivas L.) were like followings. 1. The 2 hours electrical stimulation promoted the length of leaf and the enlargement of the root diameter of 'Comet' and 'Sakuranbo' cultivars, and their root diameters were increased by 14.7% and 12.8% respectively than that of the control. 2, The plot which showed the highest root fresh weight was the 2 hours stimulation plot in 'Comet' and 8 hours stimulation plot in 'Sakuranbo', and these results were approximately 39% higher than that of the control. 3. All of the electrically stimulated plots of 'Comet' and 'Sakuranbo' showed higher NO$^{[-10]}$ $_3$content in roots than the control. And the amount of NO$^{[-10]}$ 3 in their roots showed a remarkable positive correlation with the root diameter, the root fresh weight and the total fresh weight.

  • PDF

An enhanced root system developmental responses under drought by inoculation of rhizobacteria (Streptomyces mutabilis) contributed to the improvement of dry matter production in rice

  • Suralta, Roel R.;Cruz, Jayvee A.;Cabral, Maria Corazon J.;Niones, Jonathan M.;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.231-231
    • /
    • 2017
  • Drought limits rice production under upland condition. This study quantified the effect of rhizobacteria inoculation on rice root system developmental response to drought and its role in maintaining high soil water use, and dry matter production under drought using NSIC Rc192 (rainfed lowland rice variety). The source of inoculant was Streptomyces mutabilis, a recently isolated rhizobacteria containing plant growth promoting compounds such as ACC deaminase, indole-3-acetic acid and phosphatase (Cruz et al., 2014, 2015). In the first experiment, pre-germination inoculation of seeds with S. mutabilis significantly increased the shoot and root (radicle) length as well as root hair lengths, relative to the non-inoculated control. In the second experiment, rice plants inoculated with S. mutabilis and grown in rootbox with soil generally had greater total root length under drought regardless of the timing of inoculations, relative to the non-inoculated control. Consequently, improved root system development contributed to the increase in soil water uptake under drought and thus, dry matter production. Among inoculation treatments, one-time inoculation of S. mutabilis either at pre-germination or pre-drought stress at 14 days after sowing (DAS), had significantly greater shoot dry matter production than three-time inoculation at pre-germination, at thinning (3 DAS) and at pre-drought (14 DAS). This study demonstrated the effectiveness of rhizobacteria (S. mutabilis) containing growth promoting compounds for enhancing drought dehydration avoidance root traits and improving the growth of rice plants under drought condition.

  • PDF

General Feature and Ginsenoside Content of 6 years Old Ginseng (Panax ginseng C. A. Meyer) Root (6년근(年根) 인삼(人蔘)의 등급별(等及別) 품위(品位) 및 ginsenoside 함량)

  • Cho, Hyun-Kyung;Park, So-Hee;Jung, Chung-Sung;Jo, Jae-Sun
    • Journal of the Korean Society of Food Culture
    • /
    • v.16 no.5
    • /
    • pp.478-482
    • /
    • 2001
  • This study was conducted to investigate the difference of general feature and ginsenoside content of 6 years old ginseng root among different grade of roots. Total weight of a 1st grade-6 years old ginseng root was 115.1g and weight, length, diameter and specific gravity of main root were 64.68g, 8.39cm, 3.31cm and 0.96, respectively. Main root of 1st grade ginseng root was larger in size and specific gravity and more heavy than that of End or 3rd grade of the roots. Though crude saponin contents were not so different among the different grade of roots, but ginsenoside Rb1, Rg1 and Re content were higher in 1st grade of root than that of 2nd or 3rd grade of root. Those ginsenosides were located mainly in periderm and cortex.

  • PDF

Analysis and Identification of Expressed Sequence Tags in Hairy Root Induced from Korean Ginseng (Panax ginseng C. A. Meyer)

  • Yang, Deok-Chun;In, Jun-Gyo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.2
    • /
    • pp.154-162
    • /
    • 2004
  • Hairy roots were induced from Korean ginseng (Panax ginseng C. A. Meyer) root explants and studied for their gene expression. A total of 3,000 ESTs (expressed sequence tags) from ginseng hairy root were determined and about 2,700 ESTs have a length of readable sequence, which result in 1,352 unique ESTs sequences. The 879 ESTs showed significant similarities to known nucleotide or amino acid sequences in other plant species, which were divided into eleven categories depending upon gene function. The remaining 473 sequences showed no significant matches, which are likely to be transcripts or to be matched to other organisms. The results indicated that the analysis of the ginseng hairy root ESTs by partial sequencing of random cDNA clones may be an efficient approach to isolate genes that are functional in ginseng root in a large scale. Our extensive EST analysis of genes expressed in ginseng hairy root not only contributes to the understanding of the dynamics of genome expression patterns in root organ but also adds data to the repertoire of all genomic genes.