Browse > Article
http://dx.doi.org/10.5338/KJEA.2010.29.4.408

Effectiveness of Arbuscular Mycorrhizal Fungi (AMF) Inoculation on the Growth of Perilla  

Wee, Chi-Do (Department of Agriucultural Chemistry, Sunchon National University)
Sohn, Bo-Kyoon (Department of Agriucultural Chemistry, Sunchon National University)
Publication Information
Korean Journal of Environmental Agriculture / v.29, no.4, 2010 , pp. 408-416 More about this Journal
Abstract
To evaluate the effectiveness of AMF on the growth of horticultural crops, we compared mycorrhizal and non-mycorrhizal plants, perilla (P. frutescens Britt.), that were inoculated with AMF propagules. In the early stages of growth of perilla, compared to the AMF- perilla seedlings, in AMF+ perilla seedlings at 3 weeks after sowing, leaf length and width increased 17% and 29%, leaf area increased 28%, and shoot fresh weight increased 33%, root total length increased 1%, and chlorophyll content increased 3%. Further at 10 weeks after sowing, compared to the AMF- perilla plants, in perilla plants inoculated with AMF at the sowing and transplanting stages, leaf area increased 21% and 19%, shoot length increased 19% and 17%, root fresh weight increased 17% and 20%, and chlorophyll content increased 5.1% and 4.8%, respectively. Moreover, at 14 weeks after sowing, compared to the AMFperilla plants, in perilla plants inoculated with AMF at the sowing and transplanting stages, the number of leaves increased 16% and 20%, root fresh weight increased 16% and 17% significantly. Further, leaf fresh weight increased 9% and 11%, shoot diameter increased 4.5% and 7.3%, and chlorophyll content increased 1.5% and 2.5%, respectively. The levels of many macronutrients and micronutrients were tended to be significantly higher in AMF+ plants than in AMF- plants, supporting the association between AMF and enhanced growth of plants grown from AMF+ seedlings.
Keywords
Arbuscular mycorrhizal fungi(AMF); Perilla (P. frutescens Britt.);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yano-Melo, A.M., Maia, L.C., Saggin, O.J., Lima-Filho, .M., Melo, N.F., 1999. Effect of arbuscular mycorrhizal fungi on the acclimatization of micropropagated banana plantlets. Mycorrhiza 9, 119-123.   DOI
2 SAS Institute, 1990. SAS User Guide, Version 6.08. SAS Institute Inc., SAS Circle, Box 8000, Cary, NC, 27515-800010.
3 Schenck, N.C., Perez, Y., 1990. Manual for the Identification of VA Mycorrhizal Fungi. Synergistic Publications, Gainesville, pp. 17-36.
4 Smith, S.E., Read, D.J., 1997. Mycorrhizal Symbiosis. Academic Press, London, p. 605.
5 Sohn, B.K., Kim, K.Y., Chung, S.J., Kim, W.S., Park, S.M., Kang, J.K., Rim, Y.S., Cho, J.S., Kim, T.H., Lee, J.H., 2003. Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Sci. Hort. 98, 173-183.   DOI   ScienceOn
6 Sorensen, J.N., Larsen, J., Jakobsen, I., 2005. Mycorrhiza formation and nutrient concentration in leek (Allium porrum) in relation to previous crop and cover crop management on high P soil. Plant and Soil. 273, 101-114.   DOI
7 Ueda, H., Yamazaki, C., Yamazaki, M., 2003. Inhibitory effect of Perilla leaf extract and luteolin on mouse skin tumor promotion. Biol. Pharmaceut. Bull. 26(4), 560-563.   DOI   ScienceOn
8 van der Heijden, M.G., Streitwolf-Engel, R., Riedl, R., Siegrist, S., Neudecker, A., Ineichen, K., Boller, T., Wiemken, A., Sanders, I.R., 2006. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol. 172, 739-752.   DOI   ScienceOn
9 Watanabe, Y., Uchiyama, F., Yoshida, K., 1994. Compositional changes in spinach (Spinacia oleracea L.) grown in the summer and in the fall. J. Jpn. Soc. Hortic. Sci. 62, 889-895.   DOI
10 Yamamoto, H., and Ogawa, T., 2002. Antimicrobial activity of perilla seed polyphenols against oral pathogenic bacteria. Biosci. Biotechnol. Biochem. 66(4), 921-924.   DOI   ScienceOn
11 Yamasaki, K., Nakano, M., Kawahata, T., Mori, H., Otake, T., Ueba, N., et al., 1998. Anti-HIV-1 activity of herbs in Labiatae. Biol. Pharm. Bull. 21(8), 829-833.   DOI   ScienceOn
12 Hamel, C., Dalpe, Y., Furlan, V., Parent, S., 1997. Indigenous populations of arbuscular mycorrhizal fungi and soil aggregate stability are major determinants of leek (Allium porrum L.) response to inoculation with Glomus intraradices Schenck and Smith or Glomus versiforme (Karsten) Berch. Mycorrhiza 7, 187-196.   DOI
13 Koide, R.T., Mosse, B., 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza 14, 145-163.   DOI   ScienceOn
14 Happer, C.M., 1983. The effect of nitrate and phosphate on the vesicular-arbuscular mycorrhizal infection of lettuce. New Phytol. 9, 389-399.
15 Hayman, D.S., Johnson, A.M., Ruddlesdin, I., 1975. The influence of phosphate and crop species on Endogone spores and vesicular-arbuscular mycorrhiza under field conditions. Plant Soil. 43, 489-495.   DOI
16 Kawahata, T., Otake, T., Mori, H., Kojima, Y., Oishi, I., Oka, S., et al., 2002. A novel substance purified from Perilla frutescens Britton inhibits an early stage of HIV-1 replication without blocking viral adsorption. Antivir. Chem. Chemother. 13(5), 283-288.   DOI
17 Lu, S., Miller, M.H., 1989. The role of VA mycorrhizae in the absorption of P and Zn by maize in field and growth chamber experiments. Canadian J. Soil Sci. 69, 97-109.   DOI
18 Phillips, J.M., Hayman, D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158-161.   DOI
19 Ravindran, P. N., and Shylaja, M., 2004. Perilla. In K. V. Peter (Eds.), Handbook of herbs and spices. Cambridge: Woodhead Publishing Ltd., pp. 482-494.
20 Rillig, M.C., 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84, 355-363.   DOI   ScienceOn
21 Rillig, M.C., Mummey, D.L., 2006. .Mycorrhizas and soil structure. New Phytol. 171, 41-53.   DOI   ScienceOn
22 Brundrett, M.C., Piche, Y., Peterson, R.L., 1984. A new method for observing the morphology vesiculararbuscular mycorrhizae. Can. J. Bot. 62, 2128-2134.   DOI
23 Baltruschat, H., Dehne, H.W., 1988. The occurrence of vesicular-arbuscular mycorrhiza in agro-ecosystems. I. Influence of nitrogen and green manure in continuous monoculture and in crop rotation on the inoculum potential of winter wheat. Plant and Soil. 107, 279-284.   DOI
24 Banno, N., Akihisa, T., Tokuda, H., Yasukawa, K., Higashihara, H., Ukiya, M., et al., 2004. Triterpene acids from the leaves of Perilla frutescens and their anti inflammatory and antitumor-promoting effects. Biosci. Biotechnol. Biochem. 68(1), 85-90.   DOI   ScienceOn
25 Bouwmeester, H.J., Roux, C., Lopez-Raez, J.A., Becard, G., 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 12, 224-230.   DOI   ScienceOn
26 Cho, E.J., Lee, D.J., Wee, C.D., Kim, H.L., Cheong, Y.H., Cho, J.S., Sohn, B.K., 2009. Effects of AMF inoculation on soil structure in mycorrhizosphere. Sci. Hort. 122, 633-183.   DOI   ScienceOn
27 Davies Jr., F.T., Potter, J.R., Linderman, R.G., 1993. Drought resistance of mycorrhizal pepper plants independent of leaf P concentration response in gas exchange and water relations. Physiol. Plant. 87, 45-53.   DOI
28 Fontenla, S., Garcia-Romera, I., and Ocampo, J.A., 1999. Negative influence of non-host plants on the colonization of Pisum sativum by the arbuscular mycorrhizal fungus Glomus mosseae. Soil Biol. Biochem. 31, 1591-1597.   DOI   ScienceOn
29 Gavito, M.E., Miller, M.H., 1998. Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize. Plant and Soil. 199, 177-186.   DOI   ScienceOn
30 Guo, R., Pittler, M. H., Ernst, E., 2007. Herbal medicines for the treatment of allergic rhinitis: A systematic review. Ann. Allergy Asthma Immunol. 99(6), 483-595.   DOI   ScienceOn
31 Abbott, L.K., Robson, A.D., 1984. The effect of VA mycorrhizae on plant growth. In: Powell, C.L., Bagyaraj, D.J. (Eds.), VA mycorrhiza. CRC Press, Boca Raton, pp. 113-130.
32 Abdalla, M.E., Abdel-Fattah, G.M., 2000. Influence of the endomycorrhizal fungus Glomus mosseae on the development of peanut pod root disease in Egypt. Mycorrhiza 10, 29-35.   DOI
33 Amijee, F., Tinker, P.B., Stribley, D.P., 1989. The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol. 111, 435-446.   DOI   ScienceOn
34 n, Z.Q., Hendrix, J.W., Hershman, D.E., Henson, G.T., 1990. Evaluation of the most probable number (MPN) and wet-sieving methods for determining soil-borne populations of endogonaceous mycorrhizal fungi. Mycologia 82, 576-581.   DOI
35 A Arihara, J., Karasawa, T., 2000. Effect of previous crops on arbuscular mycorrhizal formation and growth of succeeding maize. Soil Sci. Plant Nutr. 46, 43-51.   DOI   ScienceOn