• Title/Summary/Keyword: Total protein synthesis

Search Result 292, Processing Time 0.031 seconds

Ammonium Excess Promotes Proline Synthesis but Inhibits Glutathione Synthesis in Oilseed Rape (Brassica napus L.)

  • Hyunjae Lee;Seon-Hye Baek;Tae-Hwan Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.109-115
    • /
    • 2023
  • Ammonium (NH4+) serves as a nitrogen source, but its elevated levels can hinder plant growth and production. Excess NH4+ with α-ketoglutarate is assimilated into glutamate, a precursor of proline and glutathione (GSH). This study aimed to investigate the effects of excessive NH4+ on the regulation of proline and GSH synthesis. Detached leaves from oilseed rape (Brassica napus L.) were fed with 0, 50, 100, 500, and 1000 mM NH4Cl for 16 h. As the NH4+ concentrations increased, the leaves exhibited progressive wilting and yellowing. Furthermore, total carotenoid and chlorophyll concentrations declined in response to all NH4+ treatments, with the lowest levels observed in 1000 mM NH4+ treatment. Hydrogen peroxide (H2O2) concentration showed a minor increase at low NH4+ concentration (50 and 100 mM) treatments but a significant increase at high NH4+ (500 and 1000 mM), which was consistent with the localization of H2O2. Amino acid concentrations increased with increasing in NH4+ concentration, while the protein concentration displayed the opposite trend. Proline and cysteine concentrations exhibited a gradual increase in response to increasing NH4+ concentrations. However, GSH concentrations rose only in the 50 mM NH4+ treatment and decreased in the 500 and 1000 mM NH4+ treatments. These results indicate that excessive NH4+ is primarily assimilated into proline, while GSH synthesis is adversely affected.

Modulation of the Tendency Towards Inclusion Body Formation of Recombinant Protein by the Addition of Glucose in the araBAD Promoter System of Escherichia coli

  • Lee, You-Jin;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1898-1903
    • /
    • 2007
  • We attempted to modulate the overall protein expression rate through the addition of a repressor against the araBAD promoter system of Escherichia coli, in which glucose was used as a repressor. Therefore, 0.5% L-arabinose was initially contained as an inducer in culture medium, and either 2% glucose or 2% glycerol was used as a carbon source, and it was found that the expression of recombinant interferon-${\alpha}$ could be observed at the beginning of the batch culture when glycerol was used as a carbon source. However, when glucose was used, the initiation of recombinant interferon-${\alpha}$ expression was delayed compared with that when glycerol was used. Furthermore, when the addition of 0.5% glucose was carried out once or twice after 0.5% L-arabinose induction during DO-stat fed-batch culture, the distributions of soluble and insoluble recombinant interferon-${\alpha}$ were modulated. When glucose was not added after the induction of L-arabinose, all of the expressed recombinant interferon-${\alpha}$ formed an inclusion body during the later half of culturing. However, when glucose was added after induction, the expressed recombinant interferon-${\alpha}$ did not all form an inclusion body, and about half of the total recombinant interferon-${\alpha}$ was expressed in a soluble form. It was deduced that the addition of glucose after the induction of L-arabinose might lower the cAMP level, and thus, CAP (catabolite activator protein) might not be activated. The transcription rate of recombinant interferon-${\alpha}$ in the araBAD promoter system might be delayed by the partial repression. This inhibition of the transcription rate probably resulted in more soluble interferon-${\alpha}$ expression caused by the reduction of the protein synthesis rate.

Anti-Obesity Effect of Schizandrae Fructus Water Extract through Regulation of AMPK/Sirt1/PGC-1α signaling pathway (AMPK/Sirt1/PGC-1α 신호 전달 경로의 조절을 통한 오미자 추출물의 비만 개선 효과)

  • Lee, Se Hui;Park, Hae-Jin;Shin, Mi-Rae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.37 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • Objectives : Although the anti-obesity effect of Schizandrae Fructus water extract has been demonstrated, its underlying mechanism is still unclear. Therefore, we aimed to evaluate the anti-obesity effect of Schizandrae Fructus water extract through the p-AMP-activated protein kinase (p-AMPK), sirtuin1 (Sirt1), and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling in 60% high-fat diet (HFD)-induced obese mouse model. Methods : Male C57BL/6 mice were divided into four groups. The Normal group was fed a normal diet and the obese groups were fed 60% HFD. Except for the Control group, the GG group was supplemented with 0.5% Garcinia gummigutta and the SCW group was supplemented with 0.5% Schizandrae Fructus water extract. After 6 weeks, obesity-related biomarkers in serum were measured and the expressions of protein for lipid-related factors in liver tissue were analyzed by western blot. Results : Treatment with SCW significantly down-regulated body weight compared to the Control group. SCW down-regulated levels of triglyceride and total cholesterol in serum and significantly increased p-AMPK, Sirt1, and PGC-1α in liver tissue. In addition, the expressions of fatty acid oxidation-related proteins such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A (CPT-1A), uncoupling protein 1 (UCP1), and uncoupling protein 3 (UCP3) were significantly up-regulated. However, fatty acid synthesis-related proteins including sterol regulatory element-binding protein-1 (SREBP-1), phospho-Acetyl-CoA Carboxylase (p-ACC), and fatty acid synthase (FAS) were significantly down-regulated. Conclusions : Taken together, SCW treatment showed anti-obesity effect by regulating both fatty acid oxidation-related and fatty acid synthesis-related proteins through AMPK/Sirt1/PGC-1α signaling in 60% HFD-induced obese mice.

The Effect of TGF-{\beta}_1 on Cellular Activity of Periodontal Ligament Cells activated by PDGF-BB (PDGF-BB에 의한 치주인대세포활성에 대한 TGF-{\beta}의 효과)

  • Baek, Sang-Churl;Park, Jin-Woo;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.457-473
    • /
    • 2002
  • The purposes of this study is to evaluate the combination effects of TGF-${\beta}_1$ and PDGF-BB on the periodontal ligament cells to use as a regeneration promoting agent of periodontal tissue. Human periodontal ligament cells were prepared from the first premolar tooth extracted for the orthodontic treatment and were cultured in DMEM/100% FBS at the $37^{\circ}C$, 5% $CO_2$ incubator. Authors measured the DNA synthesis, total protein, collagen and noncollagenous protein synthesis according to the concentration of TGF-${\beta}_1$,(1,5ng/ml) and PDGF-BB (1,10 ng/ml) in combination. To explore further this delayed effect of TGF-${\beta}_1$, we preincubated human periodontal ligament cells with TGF-${\beta}_1$ for 4 or 24 hours before PDGF-BB stimulation. The results were as follows: The DNA synthetic activity was increased dose dependently by TGF-${\beta}_1$, PDGF-BB. The combination of TGF-${\beta}_1$ and PDGF-BB consistently enhanced the DNA synthetic activity to PDGF-BB alone. The ability of TGF-${\beta}_1$ to enhance DNA synthetic activity in PDGF-BB treated periodontal ligament cells was dose dependent. The maximum mitogenic effect was at the 5ng/ml of TGF-${\beta}_1$ and l0ng/ml of PDGF-BB. Preincubation of cell with TGF-${\beta}_1$ resulted in significantly greater response to PDGF-BB at all TGF-${\beta}_1$ concentration studied, and may be useful for clinical application in periodontal regenerative procedures. The total protein, collagen and noncollagen synthesis was increased dose pendently by TGF-${\beta}_1$, PDGF-BB. The % of collagen was slightly decreased according to the concentration of TGF-${\beta}_1$, PDGF-BB. The effect of TGF-${\beta}_1$, PDGF-BB were not specific for collagen synthesis since it also increased noncollagenous protein synthesis. This study demonstrates that PDGF-BB is major mitogens for human periodontal ligament cells in vitro, and supports a role for TGF-${\beta}_1$ as a regulation of the mitogenic and total protein formation to PDGF-BB in these cells.

The Effect of Light on the Formation of Chlorophyll-Protein Complexes in Oat Seedlings during Greening (녹화중 귀리 유식물의 엽록소-단백질 복합체 형성에 미치는 광선의 효과)

  • 이동희;문연희
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.643-656
    • /
    • 1996
  • Various light intensity and light quality were treated to oat seedlings to investigate the effect of light on the chlorophyll accumulation and the formation of chlorophyll-protein complexes. The Increase of total chlorophyll accumulation and Chl (chlorophyll) a/b ratio was promoted under H (high intensity) white light during oat chloroplast development when compared to 1 (low intensity) white light. Also H white light was more effective in the formation of chlorophyll-protein complexes associated with PSI CCI and CCII than L white light. The seedlings grown in various right quality caused little changes in total chiorophyl and ChI-a/b ratio when compared to those grown in L white light. The assembly of LHCII trimer was more affected by L white light treatment in the formation of-chlorophyll-protein complexes than red light treatment. The effect of blue light on the relative composition of chlorophyll-protein complexes was similar to that of L white light. Particualrly, blue light was more effective in the synthesis of LHCII monomer than the other light quality at the early stage of greening. When compared to red light, blue light was more effective the increase of chlorophyll accumulation and Chl a/b ratio than 1ight Quality, and light Quality may be in important factor for the regulation of the organization in the chlorophyll-protein complexes curing greening.

  • PDF

Proteomics of Liver Tissues of Bombina orientalis Following Exposure to Nonylphenol (Proteomics를 이용한 내분비계장애물질인 nonylphenol에 노출된 무당개구리의 단백질 발현 비교 연구)

  • Kim, Ho-Seung;Gye, Myung-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.369-374
    • /
    • 2003
  • Nonylphenol (NP), an well known aquatic contaminant, has been known to induce abnormalities in various aquatic animals. In an effort to develop proteome in the study of aquatic contamination of NP and its impact on the amphibia, protein changes in liver tissues of Korean red bellied frog, Bombina orientalis was investigated following the NP exposure. NP was administered intraperitoneally to male B. orientalis at 10 mg/kg body weight. At 48 and 96h after the treatment, the frog livers were sampled, and the protein fraction was separated using two dimensional gel electrophoresis (2D/E) and visualized with Coomassie brilluant blue staining. The 2D/E Images of the tissue from the animals treated with NP showed marked changes of protein spots (about 20% of total protein spots). Analysis of the 50-60 separated spots allowed identification of the major protein changes in the overall pattern for the stressor (NP) by time (0,48 and 96 h). At 48h after treatment, 8 spots were increased and 12 spots were reduced. Then, at 96h after treatment, 10 spots were increased and 8 spots were reduced. In total, approximately 29% of liver proteins showed the altered expression following the NP treatment. It is suggested that protein expression was repressed by blocking of certain metabolisms at 48 hand induced by the synthesis of new proteins for adaptation at 96 h following NP exposure. This application for 2D/E analysis may show promise in searching biomarkers for environmental proteomics in amphibians.

Modulation of the Somatotropic Axis in Periparturient Dairy Cows

  • Kim, Jin Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.147-154
    • /
    • 2014
  • This review focuses on modulation of growth hormone (GH) and its downstream actions on periparturient dairy cows undergoing physiological and metabolic adaptations. During the periparturient period, cows experience a negative energy balance implicating that the feed intake does not meet the total energy demand for the onset of lactation. To regulate this metabolic condition, key hormones of somatotropic axis such as GH, IGF-I and insulin must coordinate adaptations required for the preservation of metabolic homeostasis. The hepatic GHR1A transcript and GHR protein are reduced at parturition, but recovers on postpartum. However, plasma IGF-I concentration remains low even though hepatic abundance of the GHR and IGF-I mRNA return to pre-calving value. This might be caused by alternation in IGFBPs and ALS genes, which consequently affect the plasma IGF-I stability. Plasma insulin level declines in a parallel manner with the decrease in plasma IGF-I after parturition. Increased GH stimulates the lipolytic effects and hepatic glucose synthesis to meet the energy requirement for mammary lactose synthesis, suggesting that GH antagonizes insulin-dependent glucose uptake and attenuates insulin action to decrease gluconeogenesis.

Quantitative Comparison of Diversity and Conformity in Nitrogen Recycling of Ruminants

  • Obitsu, T.;Taniguchi, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.440-447
    • /
    • 2009
  • Domestic ruminant animals are reared in diverse production systems, ranging from extensive systems under semi-arid and tropical conditions with poor feed resources to intensive systems in temperate and cold areas with high quality feed. Nitrogen (N) recycling between the body and gut of ruminants plays a key role in the adaptation to such diverse nutritional conditions. Ammonia and microbial protein produced in the gut and urea synthesized in the liver are major players in N-recycling transactions. In this review, we focus on the physiological factors affecting urea production and recycling. Sheep and buffalo probably have higher abilities to reabsorb urea from the kidney compared with cattle. This affects the degree of urea-N recycling between the body and gut at both low and high N intakes. The synthesis and gut entry of urea also differs between cattle bred for either dairy or beef production. Lactating dairy cows show a higher gut entry of urea compared with growing cattle. The synthesis and recycling of urea dramatically increases after weaning, so that the functional development of the rumen exerts an essential role in N transactions. Furthermore, high ambient temperature increases urea production but reduces urea gut entry. An increase in total urea flux, caused by the return to the ornithine cycle from the gut entry, is considered to serve as a labile N pool in the whole body to permit metabolic plasticity under a variety of physiological, environmental and nutritional conditions.

Regulation of bone formation by high glucose in PDL cells

  • Jung, In-Ok;Zhang, Cheng-Gao;Kim, Sung-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.80-80
    • /
    • 2003
  • Insulin-dependent or Type 1 diabetes mellitus (IDDM) has been associated with an increased severity of periodontal disease. Since periodontal ligament (PDL) cells play a significant role in maintenance and regeneration of mineralized tissue, the success of procedures, such as guided tissue regeneration, is directly related to the ability of these cells to augment mineralized tissue. In this study, we investigated the time- and dose-dependent effect of high glucose on the proliferation and collagen synthesis of human periodontal ligament (PDL) cells. PDL cells were treated with high glucose (22mM, 33mM, 44mM) for 1 or 2 days. High glucose significantly inhibited proliferation of PDL cells as a time- and dose-dependent manner as evidenced by MTT assay. PDL cells were cultured in high glucose media (22mM, 33mM, 44mM) for 24 h. The ratio of collagen content to total protein was evaluated, and the gene expression of type I collagen was assessed by RT - PCR. The high concentration of glucose inhibited collagen synthesis, a marker of bone formation activity. This study indicated high glucose concentration could alter the metabolism of periodontal ligament cell, leading to alveolar bone destruction.

  • PDF

Anti-Photoaging Effects of Angelica acutiloba Root Ethanol Extract in Human Dermal Fibroblasts

  • Park, Min Ah;Sim, Mi Ja;Kim, Young Chul
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.125-134
    • /
    • 2017
  • The effects that ultraviolet rays elicit on collagen synthesis and degradation are the most common causes of wrinkle formation and photo-aging in skin. The objectives of this study were to evaluate the effects of Angelica acutiloba root ethanol extract (AAEE) to promote collagen synthesis and inhibit collagen degradation in human dermal fibroblasts. By examining total polyphenol and flavonoid contents, electron donating ability, radical scavenging activity, and superoxide dismutase-like activity, we found that AAEE exhibited fairly good antioxidant activity. Treatment with AAEE significantly increased type I procollagen production by cultured fibroblasts, as well as reduced ultraviolet-induced matrix metalloproteinase-1 (MMP-1) expression and MMP-2 activity in a dose-dependent manner (p < 0.05). In addition, AAEE significantly increased TIMP-1 mRNA expression (p < 0.05), although without an associated dose-dependent increase in TIMP-1 protein expression. In summary, we suggest that AAEE may be a potentially effective agent for the prevention or alleviation of skin-wrinkle formation induced by ultraviolet rays.