• 제목/요약/키워드: Total pressure efficiency

검색결과 319건 처리시간 0.028초

Study of Combustion and Emission Characteristics for DI Diesel Engine with a Swirl-Chamber

  • Liu, Yu;Chung, S.S.
    • 한국분무공학회지
    • /
    • 제15권3호
    • /
    • pp.131-139
    • /
    • 2010
  • Gas motion within the engine cylinder is one of the major factors controlling the fuel-air mixing and combustion processes in diesel engines. In this paper, a special swirl-chamber is designed and applied to a DI (direct injection) diesel engine to generate a strong swirl motion thus enhancing gas motion. Compression, combustion and expansion strokes of this DI diesel engine with the swirl-chamber have been simulated by CFD software. The simulation model was first validated through comparisons with experimental data and then applied to do the simulation of the spray and combustion process. The velocity and temperature field inside the cylinder showed the influences of the strong swirl motion to spray and combustion process in detail. Cylinder pressure, average temperature, heat release rate, total amount of heat release, indicated thermal efficiency, indicated fuel consumption rate and emissions of this DI diesel engine with swirl-chamber have been compared with that of the DI diesel engine with $\omega$-chamber. The conclusions show that the engine with swirlchamber has the characteristics of fast mixture formulation and quick diffusive combustion; its soot emission is 3 times less than that of a $\omega$-chamber engine; its NO emission is 3 times more than that of $\omega$-chamber engine. The results show that the DI diesel engine with the swirl-chamber has the potential to reduce emissions.

액상소결 $SiC_f$/SiC 복합재료의 미세조직 및 강도특성 (Microstructure and Strength Property of Liquid Phase Sintered $SiC_f$/SiC Composites)

  • 이문희;조경서;이상필;이진경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.234-238
    • /
    • 2008
  • The efficiency of fiber reinforced CMC(ceramic matrix composite) on the SiC materials have been investigated, in conjunction with the fabrication process by liquid phase sintering and the characterization. LPS-$SiC_f$/SiC composites was studied with the detailed analysis such as the microstructure, sintered density, flexural strength and fracture behavior. The applicability of carbon interfacial layer has been also investigated in the LPS process. Submicron SiC powder with the constant total amount and composition ratio of $Al_2O_3,\;Y_2O_3$ as sintering additives was used in order to promote the performance of the SiC matrix material. LPS-$SiC_f$/SiC composites were fabricated with hot press under the sintering temperature and applied pressure of $1820^{\circ}C$ and 20MPa for 1hr. The typical property of monolithic LPS-SiC materials was compared with LPS-$SiC_f$/SiC composites.

  • PDF

양흡입 원심펌프에 있어서 유량변화의 영향에 관한 수치해석적 연구 (Numerical Analysis on the Effect of Flow Rate Variation in Double-Suction Centrifugal Pump)

  • 안영준;신병록
    • 한국유체기계학회 논문집
    • /
    • 제13권6호
    • /
    • pp.51-56
    • /
    • 2010
  • A numerical simulation is carried out to investigate the effect of flow rate variation and performance characteristics of double-suction centrifugal pump. Two types of pump which have different impeller inlet breadth and curvature of the shroud line consist of six blades impeller and shroud ring. Finite-volume method with structured mesh and $k-\omega$ Shear Stress Transport turbulence model was used to guaranty more accurate prediction of turbulent flow in the pump impeller. Total head, power and overall efficiency were calculated to obtain performance characteristics of two types of pump according to the variation of flow rate. From the results, impeller having smooth curve along the shroud line obtained good performance. The lower flow rate, the more circulation region, flow unsteadiness and complicate flow pattern are observed. Complicated internal flow phenomena through impellers such as flow separation, pressure loss, flow unsteadiness and performance are investigated and discussed.

90° 곡관에서의 비축대칭 끝벽면을 이용한 열유동 환경 개선 (Improvement of the Aerothermal Environment for a 90° Turning Duct by the Nonaxisymmetric Endwall)

  • 조종재;김귀순
    • 한국추진공학회지
    • /
    • 제15권4호
    • /
    • pp.1-10
    • /
    • 2011
  • 본 논문에서는 가스터빈 유로의 열유동 환경을 개선하기 위해 끝벽면의 형상에 대한 최적화를 수행하였으며, 비축대칭 끝벽면을 이용한 방법을 적용하였다. 터빈 유로를 모사하기 위해 $90^{\circ}$ 곡관을 이용하였다. 터빈 유로에서의 전압력 손실과 유로 끝벽면에서의 열전달 계수를 최소화하는 비축대칭 끝벽면형상 도출을 연구의 목적으로 하였으며, 최적화 과정의 효율성을 위해 근사 최적화 기법을 적용하였다. 연구결과를 통해, 최적화된 비축대칭 끝벽면에 의한 상당한 공력열환경 개선을 확인할 수 있었다.

2차원 극초음속 흡입구 형상 최적 설계 (Optimal Design of Two-Dimensional Hypersonic Intake Geometry)

  • 김채형;정인석
    • 한국추진공학회지
    • /
    • 제18권6호
    • /
    • pp.1-10
    • /
    • 2014
  • 극초음속 흡입구를 직관적이며 체계적으로 설계할 수 있는 최적화된 방법을 제시한다. 마하 7의 이론식으로 계산된 극초음속 흡입구는 점성 조건의 전산수치해석을 수행하여 점성에 대한 오차를 보정한다. 전산수치해석을 통한 성능 비교에서 1단 쐐기에 비해 2단 쐐기를 가지는 흡입구 형상이 성능비교에서 좋은 결과를 보였다. 또한 비설계 조건에서 극초음속 흡입구의 성능은 설계 마하수 성능에 비해 손실이 크지 않았다.

HID 램프용 전자식 안정기의 설계 (Design of Electronic Ballast for HID Lamps)

  • 이치환
    • 조명전기설비학회논문지
    • /
    • 제13권4호
    • /
    • pp.14-20
    • /
    • 1999
  • 일반적으로 전자식 안정기는 고주파 공진 인버터와 출력을 제어하는 전압-주파수 변환기로 구성되며 half-bridge 및 직렬공진회로가 사용된다. 본 연구에서는 첫째, PI 제어기를 설계하기 위해 V/F 변환기를 포함한 공진 인버터를 모델링하여 전달함수를 구하고 제어기 PI게인을 결정하였다. 그리고 전류제어를 위한 PI제어기는 적분기 만으로 구성됨을 보인다. 둘째, 자기궤환형 제어기를 제안한다. 강인하며 단순한 이 제어기는 인버터 선형모델을 이용하여 궤환게인이 결정된다. 실험을 위해 250W 고압 나트륨램프를 제안된 안정기로 점등하였으며 제안된 방법의 타당성을 확인하고 자기식 안정기에 비해 전체 효율 5% 향상을 달성하였다.

  • PDF

알루미늄 함량에 따른 로켓보조추진탄용 추진제 특성 (Propellant Characteristics used for a Rocket-Assisted Projectile with Aluminium Contents)

  • 정재윤;최성한
    • 한국추진공학회지
    • /
    • 제23권5호
    • /
    • pp.60-66
    • /
    • 2019
  • 본 논문은 알루미늄 함량 변화에 따른 로켓보조추진탄(RAP) 용 추진제의 공정특성(점도), 기계적 물성, 연소특성, 지상 및 비행시험 결과에 관하여 기술하였다. 알루미늄 함량이 증가되면 초기점도는 감소하고 점도 build-up은 빨라지며 연소속도 및 압력지수가 감소하는 것을 확인하였다. 지상연소시험에서는 알루미늄이 10 wt% 함유된 RAP이 알루미늄이 2 wt%, 18 wt% 함유된 RAP에 비해 총역적이 약 5% 높았으며, 이론성능 대비 모터 효율은 알루미늄이 18 wt% 함유된 조성이 85.6%로 가장 낮았다.

Entropy and exergy analysis and optimization of the VVER nuclear power plant with a capacity of 1000 MW using the firefly optimization algorithm

  • Talebi, Saeed;Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2928-2938
    • /
    • 2020
  • A light water nuclear Reactor has been exergy analyzed, and the rate of irreversible exergy loss and exergy destruction is calculated for each of its components. The ratio of these losses compared to the total input exergy loss is calculated, which shows that most irreversible losses occur in the reactors, turbines, steam generators, respectively, as well as in the downstream operations. The main aim of this paper is to optimize the power plant using an innovative firefly algorithm and then to propose a novel strategy to improve the overall performance of the plant. As shown in the results, the exergy destruction rate of the plant decreased by 1.18% using the firefly method, and the exergy efficiency of the plant reached 29.3% comparing to the operational amount of 28.99%. Also, the results of the firefly optimization process compared to the Genetic algorithm and gravitational search algorithm to study the accuracy of the model for exergy analysis fitness problems in the power plants and the results of this comparison has shown that the results are nearly similar in the mentioned methods. However, the firefly is faster and more accurate in limited iterations.

하수처리구역내 단독정화조의 성능평가 및 최적 모형의 제안 (Evaluation of the Septic Tank Performance in the Sewage Treatment Area and Suggestion of an Optimum Model)

  • 임봉수;정금희;왕택걸
    • 한국물환경학회지
    • /
    • 제23권3호
    • /
    • pp.403-409
    • /
    • 2007
  • This study was carried out to recommend the systematic improving practice for the effective operation of septic tank, and the evaluation of its BOD and nutrient removal efficiency depending on process, the survey of characteristics of FRP material, and the suggestion of optimum septic tank model within sewage treatment area. The average BOD concentration and BOD removal efficiency of septic tank which was carried out the cleaning periodically in 63.9 mg/L and 77.8%, shows good quality better than the septic tank which was not carried out the cleaning regularly. Maximum load of tensile, flexural and compressive strength increased in proportion to its thickness, and the contents standard 25% of glass fiber required upgrade over than 30%. Configuration and performance for the optimum of the septic tank suggests that over $0.75m^3$ of the effective total volume, adding to over $0.25m^3$ a man for more than 5 men of the treated person, retention time should be within one day. Improving plans about facility and materials quality of the septic tank have an obligation that protective wall ought to install on the concrete bottom and side faces to prevent crumble or transform from loading of the ground or upper part of the structure on the tank setting. And it is eliminated the uneffective resisting pressure and it keeps off circulate imperfect products by strengthening of the test methods such as stretching strength, pressing strength, glass fiber contents and thickness.

Simulating reactive distillation of HIx (HI-H2O-I2) system in Sulphur-Iodine cycle for hydrogen production

  • Mandal, Subhasis;Jana, Amiya K.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.279-286
    • /
    • 2020
  • In this article, we develop a reactive distillation (RD) column configuration for the production of hydrogen. This RD column is in the HI decomposition section of the sulphur - iodine (SI) thermochemical cycle, in which HI decomposition and H2 separation take place simultaneously. The section plays a major role in high hydrogen production efficiency (that depends on reaction conversion and separation efficiency) of the SI cycle. In the column simulation, the rigorous thermodynamic phase equilibrium and reaction kinetic model are used. The tuning parameters involved in phase equilibrium model are dependent on interactive components and system temperature. For kinetic model, parameter values are adopted from the Aspen flowsheet simulator. Interestingly, there is no side reaction (e.g., solvation reaction, electrolyte decomposition and polyiodide formation) considered aiming to make the proposed model simple that leads to a challenging prediction. The process parameters are determined on the basis of optimal hydrogen production as reflux ratio = 0.87, total number of stages = 19 and feeding point at 8th stage. With this, the column operates at a reasonably low pressure (i.e., 8 bar) and produces hydrogen in the distillate with a desired composition (H2 = 9.18 mol%, H2O = 88.27 mol% and HI = 2.54 mol%). Finally, the results are compared with other model simulations. It is observed that the proposed scheme leads to consume a reasonably low energy requirement of 327 MJ/kmol of H2.