• Title/Summary/Keyword: Total pressure efficiency

Search Result 320, Processing Time 0.027 seconds

Simulating reactive distillation of HIx (HI-H2O-I2) system in Sulphur-Iodine cycle for hydrogen production

  • Mandal, Subhasis;Jana, Amiya K.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.279-286
    • /
    • 2020
  • In this article, we develop a reactive distillation (RD) column configuration for the production of hydrogen. This RD column is in the HI decomposition section of the sulphur - iodine (SI) thermochemical cycle, in which HI decomposition and H2 separation take place simultaneously. The section plays a major role in high hydrogen production efficiency (that depends on reaction conversion and separation efficiency) of the SI cycle. In the column simulation, the rigorous thermodynamic phase equilibrium and reaction kinetic model are used. The tuning parameters involved in phase equilibrium model are dependent on interactive components and system temperature. For kinetic model, parameter values are adopted from the Aspen flowsheet simulator. Interestingly, there is no side reaction (e.g., solvation reaction, electrolyte decomposition and polyiodide formation) considered aiming to make the proposed model simple that leads to a challenging prediction. The process parameters are determined on the basis of optimal hydrogen production as reflux ratio = 0.87, total number of stages = 19 and feeding point at 8th stage. With this, the column operates at a reasonably low pressure (i.e., 8 bar) and produces hydrogen in the distillate with a desired composition (H2 = 9.18 mol%, H2O = 88.27 mol% and HI = 2.54 mol%). Finally, the results are compared with other model simulations. It is observed that the proposed scheme leads to consume a reasonably low energy requirement of 327 MJ/kmol of H2.

Effects of Various Ventilation Systems on the Carbon Dioxide Concentration and Fruiting Body Formation of King Oyster Mushroom (Pleurotus eryngii) Grown in Culture Bottles (새송이버섯 병재배에서 환기방법이 이산화탄소 농도 및 자실체형성에 미치는 영향)

  • Lee, Hyun-Uk;Ahn, Mi-Jeong;Lee, Shin-Woo;Lee, Cheol-Ho
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.82-90
    • /
    • 2007
  • In an attempt to establish the appropriate ventilation device for the bottle culture of king oyster mushroom (Pleurotus eryngii), we investigated carbon dioxide concentration and fruiting body formation according to the various ventilation systems within the mushroom house. In addition to, the efficiency of air circulation and growth rate as well as the appearance of physiologically abnormal phenotypes during their growth stage were also evaluated. four different ventilation devices, parallel-pressure type, positive-pressure type, negative-pressure type, and positive- and negative-pressure type were applied in this study. The positive-and negative-pressure type showed the highest efficiency of air circulation as $CO_2$ concentration was 800 ppm and the level of air current was relatively low compared to the other types (the $CO_2$ concentration of parallel-pressure type was 1,400 ppm). Moreover, the stipe length, the cap diameter, yield, and general quality grown in positive- and negative type ventilation device were also better than in the other three devices though it took slightly longer period for harvesting (18.4 days) than the others (17.6, 17.9 and 18.3 days). The appearance of physiologically abnormal phenotypes such as fruiting body lump, soft rot, and brown rot were significantly decreased in positive-and negative type compared to other types, while the appearance rates were not much different for other symptoms of bacterial ooze, stipe limb and stipe bumpy. In summary, we propose that the optimal ventilation system for the bottle culture of king oyster mushroom is positive- and negative type, and this device is expected to increase the total quality as well as yield all year around.

Effect of Raw versus Flavor, Browning and Caking reduced Onion (Allium cepa L.) on Blood Pressure of Spontaneously Hypertensive Rats (향, 갈변 및 케이킹 억제 가공 처리된 양파의 섭취가 SHR 흰쥐의 혈압에 미치는 영향)

  • Choi, Pok-Su;Kwon, Ji-Youn;Han, Myung-Ryun;Han, Myung-Ryun;Kim, Sun-Hee;Chang, Moon-Jeong
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.1
    • /
    • pp.55-61
    • /
    • 2008
  • Non processed onion (Allium cepa L.) powder or onion powder processed with ${\beta}-cyclodextrin+1%$ calcium chloride+1% soluble starch solution was added to the diet of 16 week old Wistar and spontaneously hypertensive rats (SHR) for 5 weeks. 36 SHR and Wistar rats were randomly divided into 3 diet groups, each of six. They were named control, NPO (non processed onion), PO (processed onion). The rats of the control group were fed diet without onion powder. To NPO and PO groups were added 5% of non processed onion and processed onion, respectively. Body weight gain, food efficiency ratio (FER), blood pressure, angiotensin converting enzyme (ACE) activity and Na excretion of urine and feces were analyzed. The processed onion and non processed onion diet reduced body weight gain without affeting the total food intake in Wistar rats (p<0.05). The body weight gain was lowest in Wistar rats fed with a diet with processed onion powder. The rats fed with diet containing PO or NPO had lower blood systolic blood pressure in SHR (p<0.05). The effect of onion powder on decreasing the blood pressure was not significant in Wistar rats. The ACE activity in lung was lowered in the SHR fed with either PO or NPO (p<0.05) compared to those fed with control diet. The urinary Na excretion was significantly lower in SHR than Wistar rats. The effects of PO and NPO on increasing the urinary and fecal excretion of Na were significant (p<0.05). These results suggest that onion processed with ${\beta}-cyclodextrin+1%$+1% calcium chloride+1% soluble starch solution to reduce volatile flavor, browning and caking preserves an antihypertensive effect of non processed onion.

Evaluation of flux stabilisation using Bio-UF membrane filter on KZN Rivers, South Africa

  • Thoola, Maipato I.;Rathilal, Sudesh;Pillay, Lingam V.
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.313-325
    • /
    • 2016
  • South Africa recognises piped water as the main source of safe drinking water supply. Remote areas do not have access to this resource and they rely solely on surface water for survival, which exposes them to waterborne diseases. Interim point of use solutions are not practiced due to their laboriousness and alteration of the taste. Bio-ultra low pressure driven membrane system has been noted to be able to produce stable fluxes after one week of operation; however, there is limited literature on South African waters. This study was conducted on three rivers namely; Umgeni, Umbilo and Tugela. Three laboratory systems were setup to evaluate the performance of the technology in terms of producing stable fluxes and water that is compliant with the WHO 2008 drinking water guideline with regards to turbidity, total coliforms and E.coli. The obtained flux rate trends were similar to those noted in literature where they are referred to as stable fluxes. However, when further comparing the obtained fluxes to the normal dead-end filtration curve, it was noted that both the Umbilo and Tugela Rivers responded similarly to a normal dead-end filtration curve. The Umgeni River was noted to produce flux rates which were higher than those obtainable under normal dead-end. It can be concluded that there was no stabilisation of flux noted. However, feed water with low E.coli and turbidity concentrations enhances the flux rates. The technology was noted to produce water of less than 1 NTU and 100% removal efficiency for E.coli and total coliforms.

Developing the flow quality in an wing-body junction flow by the optimizing method (최적화 기법을 이용한 일반적인 날개 형상에서의 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.303-307
    • /
    • 2009
  • Secondary flow losses can be as high as $30{\sim}50%$ of the total aerodynamic losses generated in the cascade of a turbine. Therefore, these are important part for improving a turbine efficiency. As well, many studies have been performed to decrease the secondary flow losses. The present study deals with the leading edge fences on a wing-body to decrease a horseshoe vortex, one of the factors to generate the secondary flow losses, and optimizes the shape of leading-edge fence with the shape factors, such as the installed height, length, width, and thickness of the fence as the design variables. The study was investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. Total pressure loss coefficient was improved about 7.5 % than the baseline case.

  • PDF

Physical and functional properties of tunicate (Styela clava) hydrolysate obtained from pressurized hydrothermal process

  • Lee, Hee-Jeong;Chae, Sol-Ji;Saravana, Periaswamy Sivagnanam;Chun, Byung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.7
    • /
    • pp.14.1-14.8
    • /
    • 2017
  • In this study, marine tunicate Styela clava hydrolysate was produced by an environment friendly and green technology, pressurized hot water hydrolysis (PHWH) at different temperatures ($125-275^{\circ}C$) and pressure 50 bar. A wide range of physico-chemical and bio-functional properties such as color, pH, protein content, total carbohydrate content, reducing sugar content, and radical scavenging activities of the produced hydrolysates were evaluated. The appearance (color) of hydrolysates varied depending on the temperature; hydrolysates obtained at $125-150^{\circ}C$ were lighter, whereas at $175^{\circ}C$ gave reddish-yellow, and $225^{\circ}C$ gave dark brown hydrolysates. The $L^*$ (lightness), $a^*$ (red-green), and $b^*$ (yellow-blue) values of the hydrolysates varied between 35.20 and 50.21, -0.28 and 9.59, and 6.45 and 28.82, respectively. The pH values of S. clava hydrolysates varied from 6.45 ($125^{\circ}C$) to 8.96 ($275^{\circ}C$) and the values were found to be increased as the temperature was increased. The hydrolysis efficiency of S. clava hydrolysate was ranged from 46.05 to 88.67% and the highest value was found at $250^{\circ}C$. The highest protein, total carbohydrate content, and reducing sugar content of the hydrolysates were found 4.52 mg/g bovine, 11.48 mg/g and 2.77 mg/g at 175, and 200 and $200^{\circ}C$, respectively. Hydrolysates obtained at lower temperature showed poor radical scavenging activity and the highest DPPH, ABTS, and FRAP activities were obtained 10.25, 14.06, and 10.91 mg trolox equivalent/g hydrolysate (dry matter basis), respectively. Therefore, S. clava hydrolysate obtained by PHWH at $225-250^{\circ}C$ and 50 bar is recommended for bio-functional food supplement preparation.

Determination of the Optimal Operating Condition of the Hamworthy Mark I Cycle for LNG-FPSO (LNG-FPSO에의 적용을 위한 Hamworthy Mark I Cycle의 최적 운전 조건 결정)

  • Cha, Ju-Hwan;Lee, Joon-Chae;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.733-742
    • /
    • 2010
  • In this study, optimization was performed to improve the conventional liquefaction process of offshore plants, such as a LNG-FPSO(Liquefied Natural Gas-Floating, Production, Storage, and Offloading unit) by maximizing the energy efficiency of the process. The major equipments of the liquefaction process are compressors, expanders, and heat exchangers. These are connected by stream which has some thermodynamic properties, such as the temperature, pressure, enthalpy or specific volume, and entropy. For this, a process design problem for the liquefaction process of offshore plants was mathematically formulated as an optimization problem. The minimization of the total energy requirement of the liquefaction process was used as an objective function. Governing equations and other equations derived from thermodynamic laws acted as constraints. To solve this problem, the sequential quadratic programming(SQP) method was used. To evaluate the proposed method in this study, it was applied to the natural gas liquefaction process of the LNG-FPSO. The result showed that the proposed method could present the improved liquefaction process minimizing the total energy requirement as compared to conventional process.

Effect of Metal Mask Screen on Metal-induced Recombination Current and Solar Cell Characteristics (금속 마스크 스크린이 금속 재결합 전류와 태양전지 특성에 미치는 영향)

  • Lee, Uk Chul;Jeong, Myeong Sang;Lee, Joon Sung;Song, Hee-eun;Kang, Min Gu;Park, Sungeun;Chang, Hyo Sik;Lee, Sang Hee
    • Current Photovoltaic Research
    • /
    • v.9 no.1
    • /
    • pp.6-10
    • /
    • 2021
  • The mesh mask screen, which is generally used for screen printing metallization of silicon solar cell, requires high squeegee pressure and low printing speed. These requirements are acting as a limiting factor in production yield in photovoltaic industries. In order to improve the productivity, a metal mask, which has high durability and high printing speed, has been researched. In this paper, the characteristics of each solar cell, in which electrodes were formed by using a metal mask and a mesh mask, were analyzed through recombination current density. In particular, the metal-induced recombination current density (Jom) representing the recombination of the emitter-metal interface was calculated using the shading method, and the resulting efficiency and open-circuit voltage were analyzed through the diode equation. As a result of analyzing the proportion of the metal-induced recombination current density to the total emitter recombination current density, it was analyzed that the reduction of the metal-induced recombination current density through the metal mask is an important factor in reducing the total recombination current density of the solar cell.

Photo- and Sonic Degradation of Endosulfans(α, β, and sulfate) in Aqueous Solution (엔도설판류의 광 및 초음파분해)

  • Kwon, Sung Hyun;Kim, Jong Hyang;Cho, Daechul
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.460-465
    • /
    • 2007
  • Endosulfan-${\alpha}$ endosulfan-${\beta}$ and endosulfan-sulfate, which are classified as pesticides, were degraded by use of UV energy and ultrasonic irradiation. The degradation residuals were analysed by gas chromatography with an electron capture detector and TOC (total oragnic carbon) analysis. The reactions were conducted in a quartz annular reactor equipped with a low pressure mercury multilamp (8Wx2) and a sonic generator. All the aqueous solutions were concentrated as 10 mg/L initially. Endosulfans were degraded each to result in 48.2% (${\alpha}$), 50.0% (${\beta}$) and 76.5% (sulfate) of removal efficiency by UV energy, and 66.9% (${\alpha}$), 55.8% (${\beta}$) and 72.7% (sulfate) by ultrasonic irradiation, respectively. In contrast to the results of the single-component solutions, degradation of the endosulfan-sulfate was greatly suppressed to result in the lowest degradation rate and removal efficiency in the three-component solutions. This finding suggests that there should be a reversible reaction with a substantially low equilibrium constant between endosulfan-${\alpha}$ or -${\beta}$ and -sulfate in the coexistence of the three endosulfans. TOC data showed the endosulfans were decomposed by 20%~40% toward complete mineralization, producing a quantity of intermediates induced by the radical reactions. We found that all the decay reactions considered in this study nicely fell into pseudo first-order rate.

Preliminary Study on Dust Removal by Electrode-Plate Coated with Activated Carbon (활성탄전극의 분진제거에 대한 기초연구)

  • Kim, Kwang Soo;Park, Hyun Chul;Jun, Tae Hwan;Lee, Ju Haeng;Kim, Il Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.749-755
    • /
    • 2013
  • The purposes of this research are to know the optimal gab and electric pressure (voltage) of electrode-plates coated with activated carbon and also to study their arrangement through dust removal efficiency. From the experimental results of attached dust mass at different electrode-plate gab, the frequency of attachment and detachment of dust was more increased as electrode-plate gab was closer. In attached dust mass per unit area of electrode-plate, the farther electrode gab, the more increased. But in total attached dust mass, the closer electrode gab, the more removed. From the experimental results, the optimal electrode arrangement in dust removal chamber was considered that the forward parts of chamber need to be increased the number of electrode-plate, the backward parts to be increased them. The dust attachment have no relation with electric pressure while showing high removal efficiency under condition of 5 kV of voltage and 2 cm of electrode-plates gab.