• Title/Summary/Keyword: Total porosity

Search Result 280, Processing Time 0.026 seconds

Enhancement of Soil Physicochemical Properties by Blending Sand with Super Absorbent Polymers of Different Swelling Capacities (팽윤 능력이 다른 고흡수성수지(Super Absorbent Polymers)의 혼합 비율별 모래 토양의 물리화학성 변화)

  • Young-Sun Kim;Tae-Wooung Kim;Yun-Seob Kim;Yang-Ho Na;Geung-Joo Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Super absorbent polymers (SAPs) are hydrophilic molecules that can absorb large amounts of water. This study was conducted to investigate the enhancement of the physicochemical properties of sand soil blended with three SAPs imbibed with 100, 150, and 200-fold water. Three treatments were applied, namely, 100SAP, 150SAP, and 200SAP. The three SAPs were blended at concentrations of 0% (control), 3%, 5%, 7%, and 10% with sand. The pH, electrical conductivity, and cation exchangeable capacity (CEC) of soil blended with the three SAPs were pH 6.35-6.46, 0.09-0.65 dS/m, and 1.42-1.92 cmolc/kg, respectively, and their capillary porosity, total porosity, and saturated hydraulic conductivity were 21.0-29.3%, 39.2-48.7%, and 272-470 mm/hr. CEC, capillary porosity, total porosity, and saturated hydraulic conductivity of soil were positively correlated with the ratio of the SAPs (p<0.01). These results indicate that blending sand soil with SAPs increased CEC, capillary porosity, and saturated hydraulic conductivity, thus improving the nutrient-retention capacity, water-retention capacity, and permeability of the soil.

Effects of Physicochemical/Mineralogical Characteristics of Limestones and Porosity after Calcination on Desulfurization Reactivities

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Cho, Jin-Sang;Cho, Kye-Hong;Han, Choon
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.34-42
    • /
    • 2016
  • Characteristics of wet flue gas desulfurization and in-furnace desulfurization of domestic and overseas limestone with different crystallinity and crystalline size are studied in this article. Properties of desulfurization were evaluated in relation to physicochemical/ mineralogical characteristics, degree of pore formation for different calcination temperatures and TNC(total neutralizing capability). TNC of domestic high crystalline limestone was lower than that of overseas one. On the other hand, the porosity after calcination was shown to be relatively high for domestic limestone, which had high initial rates of desulfurization reactions in-furnace. Based on low pore formation and porosity with high TNC of crystalline high-Ca limestones compared to macrocrystalline ones, the former are preferred for wet desulfurization processes.

Numerical analysis of embankment primary consolidation with porosity-dependent and strain-dependent coefficient of permeability

  • Balic, Anis;Hadzalic, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.93-106
    • /
    • 2022
  • The total embankment settlement consists of three stages: the initial settlement, the primary consolidation settlement, and the secondary consolidation settlement. The total embankment settlement is largely controlled by the primary consolidation settlement, which is usually computed with numerical models that implement Biot's theory of consolidation. The key parameter that affects the primary consolidation time is the coefficient of permeability. Due to the complex stress and strain states in the foundation soil under the embankment, to be able to predict the consolidation time more precisely, aside from porosity-dependency, the strain-dependency of the coefficient of permeability should be also taken into account in numerical analyses. In this paper, we propose a two-dimensional plane strain numerical model of embankment primary consolidation, which implements Biot's theory of consolidation with both porosity-dependent and strain-dependent coefficient of permeability. We perform several numerical simulations. First, we demonstrate the influence of the strain-dependent coefficient of permeability on the computed results. Next, we validate our numerical model by comparing computed results against in-situ measurements for two road embankments: one near the city of Saga, and the other near the city of Boston. Finally, we give our concluding remarks.

Durability of Alkali-Activated Blast Furnace Slag Concrete: Chloride Ions Diffusion (알칼리 활성 슬래그 콘크리트의 내구성: 콘크리트의 염소이온 확산)

  • Nam, Hong Ki;Kyu, Park Jae;San, Jung Kyu;Hun, Han Sang;Hyun, Kim Jae
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.120-127
    • /
    • 2015
  • The aim of the present study is to investigate some characteristics of concrete according to addition of blast furnace slag and alkali-activator dosages. Blast furnace slag was used at 30%, 50% replacement by weight of cement, and liquid sulfur having NaOH additives was chosen as the alkaline activator. In order to evaluate characteristics of blast furnace slag concrete with sulfur alkali activators, compressive strength test, total porosity, chloride ions diffusion coefficient test were performed. The early-compressive strength characteristics of blast furnace slag concrete using a sulufr-alkali activators was compared with those of reference concrete and added 30, 50% blast furnace slag concrete. Also, Blast furnace slag concrete using sulfur-alkali activators enhanced the total porosity, chloride ions diffusion coefficient than two standard concrete. Alkali-activated blast furnace slag concrete was related to total porosity, compressive strength and chloride ions diffusion coefficient each others. As a result, it should be noted that the sulfur-alkali activators can not only solve the demerit of blast furnace slag concrete but also offer the chloride resistance of blast furnace slag concrete using sulfur alkali activators to normal concrete.

AN EXPERIMENTAL STUDY ON THE PORCELAIN POROCITY EXERTED BY THE CONTAMINATION OF THE CERAMO-METAL ALLOY AND LIQUID (도재소부전장금관용 합금과 용액의 오염이 기포발생에 미치는 영향에 관한 실험적 연구)

  • Jeun, Young-Chan;Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.20 no.1
    • /
    • pp.33-49
    • /
    • 1982
  • This study was undertaken to observe the porcelain porosity exerted by the contamination of the alloy and liquid. The alloy used in this study was Jelstar; liquids were Ceramco Sta-Wet liquid, distilled water and tap water; and Ceramco vacuum porcelain powder was used. The measurements with photomicroscope (x200, Olympus) were made on the porosity, the diameter (mm) of the pores and the numbers of the pores ($No/mm^2$) The results of this study were obtained as follows: 1. In the porosity, the opaque layer contained over 70% of the total porosity, and the porosity was increased about twice in every porcelain layer by the tap water. 2. The contamination of the alloy and liquid caused porosity to increase markedly at the interface of the metal-porcelain. 3. The diameter of the pores were increased about 1.5 times larger by the contaimination of the liquid, and only a slight increase in the opaque layer due to the contamination of the alloy. 4. In the numbers of the pores, there were significant differences according to the contamination of the alloy and the porcelain layer. And the contamination of the liquid caused significant differences only in the opaque layer.

  • PDF

Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1429-1449
    • /
    • 2016
  • The effect of porosity on bending and free vibration behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the FGM plates with porosity phases. The effect due to transverse shear is included by using a new refined shear deformation theory. The number of unknown functions involved in the present theory is only four as against five or more in case of other shear deformation theories. The Poisson ratio is held constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is obtained through the minimum total potential energy and Hamilton's principle. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied.

A Study on the Correlation between Strength and Compaction of Porous Concrete Using Bottom Ash Aggregate (바텀애시 골재를 사용한 다공성 콘크리트의 강도와 컴펙션의 상관관계 연구)

  • In-Hwan, Yang;Seung-Tae, Jeong;Ji-Hun, Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.359-366
    • /
    • 2022
  • In this paper, the effect of compression levels on the strengths of porous concrete using bottom ash aggregates was analyzed. Coal bottom ash (CBA) was used as aggregate in porous concrete in this study. The aggregate size types used in the CBA concrete mixtures were catagorized into two different ones. One included only a single aggregate particle size and the other included hybrid aggregate particles mixed at a ratio of 8:2 volume proportion. The water-binder ratio was fixed at 0.30, and the compression levels were applied at 0.5, 1.5, and 3.0 MPa valu es to fabricate a porou s concrete specimen. The total porosity, compressive, splitting tensile, and flexural tensile strengths were tested and analyzed. When the compression level increased, the total porosity decreased, meanwhile the compressive, split tensile, and flexural tensile strengths increased. The total porosity of concrete using hybrid aggregate was lower and the strength was larger than those of concrete using single-type aggregate. Finally, the correlation between the total porosity, compressive, split tensile, and flexural tensile strengths of porous concrete were presented. The total porosity and strength characteristics showed an inversely proportional correlation.

Influence of porosity on the behavior of cement orthopaedic of total hip prosthesis

  • Ali, Benouis;Boualem, Serier;Smail, Benbarek
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.197-206
    • /
    • 2015
  • This paper presents three-dimensional finite element method analyses of the distribution of equivalents stress of Von Mises. Induced around a cavity located in the bone cement polymethylmethacrylate (PMMA). The presences and effect of its position in the cement was demonstrated, thus on the stress level and distribution. The porosity interaction depending on their positions, and their orientations on the interdistances their mechanical behaviour of bone cement effects were analysed. The obtained results show that micro-porosity located in the proximal and distal zone of the prosthesis is subject to higher stress field. We show that the breaking strain of the cement is largely taken when the cement, containing the porosities very close adjacent to each other.

Fermentation Characteristics of Kochujang in Onggis with Different Porosities (통기성이 다른 옹기에서의 고추장 발효 특성)

  • Chung, Sun-Kyung;Lee, Kwang-Soo;An, Duck-Soon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • The effect of different porosity of onggis, Korean earthenware, on the fermentation of kochujang was investigated. The porosity was controlled with glazing treatment. Three kinds of onggis were made: one with no glazing treatment, one with outside glazing treatment, and one with both inside and outside glazing treatment. During 4 month fermentation of kochujang in porosity-controlled earthenwares, physical, chemical, microbiological, and sensory quality attributes were monitored. Higher protease activity and higher contents of amino nitrogen, free amino acids, and total neucleotide were observed in kochujang fermented in the onggi with outside glazing treatment, which might have resulted in better sensory quality. Onggi with medium porosity could be effective for fermentation of kochujang.

  • PDF

Physuical characteristics of crushed aggregates in Korea (한반도 산림골재의 물성특성)

  • 양동윤
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • In the last decade, the supply of natural aggregates has been continuously increased due to the other types of aggregates. In general, aggregates constitute 70-80% of the total volume of concrete, so the quality of aggregates is main factor controlling physical characteristics of concrete. For this reason, physical properties of aggregate according to different rock types were studied. The majority of crushed aggregates is taken out of granite, gneiss, sandstone, andesite, basalt and so forth. The physical properties of these rock types were tested and most of them fell within the acceptable limit on the base of Korean standard regulation. The major lithology of the crushed aggregates is granite and gneiss, both of which are marked for more than 50% of total lithology thpes in Korea. A to the physical properties of granite, the high specific gravity coincides with low porosity, low absorption ratio, while the abrasion and soundness index show, in general, no specific trend. It has been assumed that slight differences of the physical properties of granite aggregates are related with those of the mineral composition, grain size, and so on. In comparison to granite, the physical properties of gneiss have little correlation one after another. This trend is related to different mineral composition, grain size and typical sheet fractures typically prevailing in the texture of gneiss. Spatial pattern of physical properties shows that high specific gravity of granite coincides only with low porosity and absorption ratio in all provinces except Cheolla province, and high specific gravity of gneiss coincides with low porosity and absorption ratio only in Cheolla and Gandwon provinces.

  • PDF