• Title/Summary/Keyword: Total pollutant management

Search Result 229, Processing Time 0.039 seconds

Exposure Assessment of Dust, Ultra Fine Dust(Particulate Matter 2.5, PM2.5) and Black Carbon among Aircraft Cabin Cleaners (항공기 기내 청소노동자의 분진, 초미세먼지(PM2.5) 및 블랙카본 노출수준 평가)

  • Hyunhee Park;Sedong Kim;Sungho Kim;Seung-Hyun Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.171-187
    • /
    • 2023
  • Objectives: Aircraft cabin cleaning work is characterized by being performed within a limited time in a narrow and enclosed space. The objective of this study was to evaluate the exposure levels to dust, ultra fine dust(PM2.5) and black carbon(BC) among aircraft cabin cleaners. Methods: Active personal air sampling for respirable dust(n=73) and BC(n=47) was conducted during quick transit cleaning(cabin general and vacuum-specific) and seat cover replacement and total dust and PM2.5 were area-air-sampled as well. Also, size distribution of particle was identified with the cleaning workers targeted. Dusts were collected with PVC filters using gravimetric analysis. The concentration of PM2.5 and the particle size distribution were measured with real-time direct reading portable equipment using light scattering analysis. The concentration of BC was measured by aethalometer(filter-based real-time light absorption analysis instrument). Results: The geometric mean of respirable dust was the highest at vacuum cleaning as 74.4 ㎍/m3, following by replacing seat covers as 49.3 ㎍/m3 and cabin general cleaning as 47.8 ㎍/m3 . The arithmetic mean of PM2.5 was 4.83 ~ 9.89 ㎍/m3 inside the cabin, and 28.5~44.5 ㎍/m3 outside the cabin(from bus and outdoor waiting space). From size distribution, PM2.5/PM10 ratio was 0.54 at quick transit cleaning and 0.41 at replacing seat covers. The average concentration of BC was 2~7 ㎍/m3, showing a high correlation with the PM2.5 concentration. Conclusions: The hazards concentration levels of aircraft cabin cleaners were very similar to those of roadside outdoor workers. As the main source of pollution is estimated to be diesel vehicles operating at airports, and it is necessary to replace older vehicles, strengthen pollutant emission control regulations, and introduce electric vehicles. In addition, it is necessary to provide as part of airport-inftastructure a stable standby waiting space for aircraft cabin cleaners and introduce a systematic safety and health management system for all workers in the aviation industry.

Distributions of Organic Matter and Heavy Metals in the Surface Sediment of Jaran Bay, Korea (자란만 표층 퇴적물 중 유기물과 중금속 농도분포)

  • Hwang, Hyunjin;Hwang, Dong-Woon;Lee, Garam;Kim, Hyung-Chul;Kwon, Jung-No
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.78-91
    • /
    • 2018
  • In order to understand the distributions of organic matter and heavy metal concentrations in the surface sediment of Jaran Bay, we measured the grain size, total organic carbon (TOC), total nitrogen (TN), and heavy metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn) in surface sediments collected at 15 stations in this bay in November 2014. The sediment consisted of finer sediment such as mud and clay, with 8.6-9.8Ø($9.3{\pm}0.3$Ø) of mean grain size. The concentrations of TOC and TN in the sediment ranged from 1.51-2.39 % ($1.74{\pm}0.22%$) and 0.20-0.33 % ($0.23{\pm}0.03%$), respectively, and did not show spatial difference. The carbon to nitrogen ratio (C/N ratio) ranged from 5-10, indicating that organic matter in the sediment originated from oceanic sources such as animal by-products from fish and shellfish farms. The concentrations of Cr, Fe, and Mn were much higher in the mouth of the bay than in the inner bay, and the concentrations of As, Cd, Cu, Hg, Pb, and Zn showed an opposite distribution pattern. Based on the results of the sediment quality guidelines (SQGs), enrichment factor (EF), geoaccumulation index ($I_{geo}$), pollutant load index (PLI), and ecological risk index (ERI), the surface sediment in Jaran Bay is not polluted or only slightly polluted with Cd, Cr, Cu, Hg, Pb, and Zn, whereas it is moderately to strongly polluted with As. In particular, some regions in the bay were identified as having a considerable risk status, indicating that metal concentration in the sediment could impact benthic organisms. Thus, the systematic management for marine and land sources of organic matter and heavy metals around Jaran Bay is necessary in order to ensure seafood safety and maintain sustainable production on shellfish farms.

Identifying sources of heavy metal contamination in stream sediments using machine learning classifiers (기계학습 분류모델을 이용한 하천퇴적물의 중금속 오염원 식별)

  • Min Jeong Ban;Sangwook Shin;Dong Hoon Lee;Jeong-Gyu Kim;Hosik Lee;Young Kim;Jeong-Hun Park;ShunHwa Lee;Seon-Young Kim;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.306-314
    • /
    • 2023
  • Stream sediments are an important component of water quality management because they are receptors of various pollutants such as heavy metals and organic matters emitted from upland sources and can be secondary pollution sources, adversely affecting water environment. To effectively manage the stream sediments, identification of primary sources of sediment contamination and source-associated control strategies will be required. We evaluated the performance of machine learning models in identifying primary sources of sediment contamination based on the physico-chemical properties of stream sediments. A total of 356 stream sediment data sets of 18 quality parameters including 10 heavy metal species(Cd, Cu, Pb, Ni, As, Zn, Cr, Hg, Li, and Al), 3 soil parameters(clay, silt, and sand fractions), and 5 water quality parameters(water content, loss on ignition, total organic carbon, total nitrogen, and total phosphorous) were collected near abandoned metal mines and industrial complexes across the four major river basins in Korea. Two machine learning algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the sediments into four cases of different combinations of the sampling period and locations (i.e., mine in dry season, mine in wet season, industrial complex in dry season, and industrial complex in wet season). Both models showed good performance in the classification, with SVM outperformed LDA; the accuracy values of LDA and SVM were 79.5% and 88.1%, respectively. An SVM ensemble model was used for multi-label classification of the multiple contamination sources inlcuding landuses in the upland areas within 1 km radius from the sampling sites. The results showed that the multi-label classifier was comparable performance with sinlgle-label SVM in classifying mines and industrial complexes, but was less accurate in classifying dominant land uses (50~60%). The poor performance of the multi-label SVM is likely due to the overfitting caused by small data sets compared to the complexity of the model. A larger data set might increase the performance of the machine learning models in identifying contamination sources.

A Program of Water Quality Management for Agricultural Reservoirs by Trophic State (농업용 저수지의 부영양화와 수질관리방안)

  • Lee, Kwang-Sik;Yoon, Kyung-Sup;Kim, Ho-Il;Kim, Hyung-Joong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.166-171
    • /
    • 2003
  • A total of 498 agricultural reservoirs ranging from $164{\times}10^3\;m^3$ to $253{\times}10^6\;m^3$ in storage volume were investigated from 1990 to 2001 with respect to Chl-${\alpha}$, COD concentration and pollutant loading of BOD, TN, and TP. The lakes and reservoirs could be classified to 4 types using the relationships between the ratio of storage volume per water surface area(ST/WS) and Chl-${\alpha}$ concentration. It is recommended that the improvement of polluted lakes should be performed in the order of integrated consolidation type ${\rightarrow}$ watershed consolidation type ${\rightarrow}$ in-lake consolidation type ${\rightarrow}$ Management type and reservoir should be constructed to be over $5{\sim}6\;m$ in depth(ST/WS ratio) for preventing the eutrophication of agricultural reservoirs. We propose that water quality criteria for agricultural water is changed from less than 8 mg/L to less than 6 mg/L for safety value, $6{\sim}10\;mg/L$ for concern value, and more than 10 mg/L for countermeasure value in COD concentration, respectively.

Macrobenthic Community Structure during Spring and Summer Season in the Environmental Conservation Area, Korea (환경보전해역에 서식하는 대형저서동물의 춘계와 하계의 군집구조)

  • Choi, Byoung-Mi;Yun, Jae Seong;Kim, Seong Gil;Kim, Seong-Soo;Choi, Ok In;Son, Min Ho;Seo, In-Soo
    • Journal of Marine Life Science
    • /
    • v.1 no.2
    • /
    • pp.95-108
    • /
    • 2016
  • This study was performed to investigate the community structure of macrobenthic assemblages in the Environmental Conservation area, Korea. Benthic animals were collected by van Veen grab sampler at spring (May) and summer (August) 2009. The total species number and mean density were 195 species 5.6 m-2 and 667 individuals m-2, respectively. Polychaetes were the most dominant faunal group in species (96 species) and abundance (431 individuals m-2). The major dominant species were the polychaetes Lumbrineris longifolia (76±224 individuals m-2), Mediomastus californiensis (42±117 individuals m-2), Tharyx sp.3 (26±110 individuals m-2), the bivalvia Theora fragilis (54±78 individuals m-2) and the amphipod Eriopisella schellensis (70±146 individuals m-2). Based on the cluster and nMDS ordination analysis, macrobenthic communities were divided into three faunal groups. The first group was characterized by high abundance of the polychaeta Sternaspis scutata and the amphipod Ampelisca cyclops iyoensis, which is located by most stations of Hampyeong Bay and St. 4 of Deungnyang Bay. The second group was numerically dominated by the polychaeta Capitella capitata at St. 4 and St. 5 in Gamak Bay where was most pollutant area. Finally, the third group was dominated by the polychaetes Heteromastus filiformis, Tharyx sp.3 and the amphipod Sinocorophium sinensis. Therefore, geochemical characteristics such as the bay shape and pollution gradient may be important factors controlling of the macrobenthic community structure in Environment Conservation Area.

Seasonal Variation of Water Quality in a Shallow Eutrophic Reservoir (얕은 부영양 저수지의 육수학적 특성-계절에 따른 수질변화)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.180-192
    • /
    • 2004
  • This study was carried out to assess the seasonal variation of water quality and the effect of pollutant loading from watershed in a shallow eutrophic reservoir (Shingu reservoir) from November 2002 to February 2004, Stable thermocline which was greater than $1^{\circ}C$ per meter of the water depth formed in May, and low DO concentration (< 2 mg $O_2\;L^{-1}$) was observed in the hypolimnion from May to September, 2003. The ratio of euphotic depth to mixing depth ($Z_{eu}/Z_{m}$) ranged 0.2 ${\sim}$ 1.1, and the depth of the mixed layer exceeded that of the photic layer during study period, except for May when $Z_{eu}$ and $Z_{m}$ were 4 and 4.3 m, respectively. Most of total nitrogen, ranged 1.1 ${\sim}$ 4.5 ${\mu}g\;N\;L^{-1}$, accounted for inorganic nitrogen (Avg, 58.7%), and sharp increase of $NH_3$-N Hand $NO_3$-N was evident during the spring season. TP concentration in the water column ranged 43.9 ${\sim}$ 126.5 ${\mu}g\;P\;L^{-1}$, and the most of TP in the water column accounted for POP (Avg. 80%). During the study period, DIP concentration in the water column was &;lt 10 ${\mu}g\;P\;L^{-1}$ except for July and August when DIP concentration in the hypolimnion was 22.3 and 56.7 ${\mu}g\;P\;L^{-1}$, respectively. Increase of Chl. a concentration observed in July (99 ${\mu}g\;L^{-1}$) and November 2003 (109 ${\mu}g\;L^{-1}$) when P loading through two inflows was high, and showed close relationship with TP concentration (r = 0.55, P< 0.008, n = 22). Mean Chl. a concentration ranged from 13.5 to 84.5 mg $L^{-1}$ in the water column, and the lowest and highest concentration was observed in February 2004 (13.5 ${\pm}$ 1.0 ${\mu}g\;L^{-1}$) and November 2003 (84.5 ${\pm}$29.0 ${\mu}g\;L^{-1}$), respectively. TP concentration in inflow water increased with discharge (r = 0.69, P< 0.001), 40.5% of annual total P loading introduced in 25 July when there was heavy rainfall. Annual total P loading from watershed was 159.0 kg P $yr^{-1}$, and that of DIP loading was 126.3 kg P $yr^{-1}$ (77.7% of TP loading. The loading of TN (5.0ton yr-1) was 30 times higher than that of TP loading (159.0 kg P yr-1), and the 78% of TN was in the form of non-organic nitrogen, 3.9 ton $yr^{-1}$ in mass. P loading in Shingu reservoir was 1.6 g ${\cdot}$ $m^{-2}$ ${\cdot}$ $yr^{-1}$, which passed the excessive critical loading of Vollenweider-OECD critical loading model. The results of this study indicated that P loading from watershed was the major factor to cause eutrophication and temporal variation of water quality in Shingu reservoir Decrease by 71% in TP loading (159 kg $yr^{-1}$) is necessary for the improvement of mesotrophic level. The management of sediment where tine anaerobic condition was evident in summer, thus, the possibility of P release that can be utilized by existing algae, may also be considered.

Long-Term Variations of Water Quality in Jinhae Bay (진해만의 장기 수질변동 특성)

  • Kwon, Jung-No;Lee, Jangho;Kim, Youngsug;Lim, Jae-Hyun;Choi, Tae-Jun;Ye, Mi-Ju;Jun, Ji-Won;Kim, Seulmin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.324-332
    • /
    • 2014
  • In order to reveal the long-term variations of water quality in Jinhae Bay, water qualities had been monitored at 9 survey stations of Jinhae Bay during 2000~2012. The surface and bottom waters concentrations of chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and chlorophyll-a (Chl.-a) were higher at the survey stations of Masan Bay than the stations of other Bays. Especially, station 1 which is located at the inner area of Masan Bay had the highest values in the concentrations of COD, DIN, and Chl.-a because there were terrestrial pollutant sources near the station 1 and sea current had not well circulated in the inner area of Masan Bay. In factor analysis, the station 1 also had the highest factor values related to factors which increase organic matters and nutrients in surface and bottom waters of Masan Bay. However, the stations (st.5, st.6, st.7, st.8, and st.9) of other Bays had lower values of the factors. In time series analysis, the COD concentrations of the bottom waters at 8 stations except for station 1 distinctly decreased. However, the COD concentrations of the surface waters showed no distinct decrease trends at all stations. In the concentrations of nutrients (DIN and DIP) of both surface and bottom waters, there were tremendous decrease trends at all stations. Therefore, these distinct decrease trends of the COD in bottom waters and the nutrients in surface and bottom waters of Jinhae Bay could have been associated with water improvement actions such as TPLMS (total pollution load management system).

A Study on the Characteristics of Condensable Fine Particles in Flue Gas (배출가스 중 응축성미세먼지 특성 연구)

  • Gong, Buju;Kim, Jonghyeon;Kim, Hyeri;Lee, Sangbo;Kim, Hyungchun;Jo, Jeonghwa;Kim, Jeonghun;Gang, Daeil;Park, Jeong Min;Hong, Jihyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.5
    • /
    • pp.501-512
    • /
    • 2016
  • The study evaluated methods to measure condensable fine particles in flue gases and measured particulate matter by fuel and material to get precise concentrations and quantities. As a result of the method evaluation, it is required to improve test methods for measuring Condensable Particulate Matter (CPM) emitted after the conventional Filterable Particulate Matter (FPM) measurement process. Relative Standard Deviation (RSD) based on the evaluated analysis process showed that RSD percentages of FPM and CPM were around 27.0~139.5%. As errors in the process of CPM measurement and analysis can be caused while separating and dehydrating organic and inorganic materials from condensed liquid samples, transporting samples, and titrating ammonium hydroxide in the sample, it is required to comply with the exact test procedures. As for characteristics of FPM and CPM concentrations, CPM had about 1.6~63 times higher concentrations than FPM, and CPM caused huge increase in PM mass concentrations. Also, emission concentrations and quantities varied according to the characteristics of each fuel, the size of emitting facilities, operational conditions of emitters, etc. PM in the flue gases mostly consisted of CPM (61~99%), and the result of organic/inorganic component analysis revealed that organic dusts accounted for 30~88%. High-efficiency prevention facilities also had high concentrations of CPM due to large amounts of $NO_x$, and the more fuels, the more inorganic dusts. As a result of comparison between emission coefficients by fuel and the EPA AP-42, FPM had lower result values compared to that in the US materials, and CPM had higher values than FPM. For the emission coefficients of the total PM (FPM+CPM) by industry, that of thermal power stations (bituminous coal) was 71.64 g/ton, and cement manufacturing facility (blended fuels) 18.90 g/ton. In order to estimate emission quantities and coefficients proper to the circumstances of air pollutant-emitting facilities in Korea, measurement data need to be calculated in stages by facility condition according to the CPM measurement method in the study. About 80% of PM in flue gases are CPM, and a half of which are organic dusts that are mostly unknown yet. For effective management and control of PM in flue gases, it is necessary to identify the current conditions through quantitative and qualitative analysis of harmful organic substances, and have more interest in and conduct studies on unknown materials' measurements and behaviors.

The State of Marine Pollution in the Waters adjacent to Shipyards in Korea - 1. Analysis of Pollution Incidents occurred in Shipyards (국내 조선소 주변해역의 해양오염 현황 - 1. 조선소 오염사고 분석)

  • Kim, Kwang-Soo;Han, Won-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.646-652
    • /
    • 2014
  • Data of pollution incidents which occurred in shipyards of South Korea for 10 years from 2004 to 2013 were collected and analyzed in order to propose the plans for the prevention of pollution incidents in shipyards. Total number of pollution incidents in shipyards was 103 cases over the nation of Korea for the recent 10 years and the average annual number was about 10 cases, and annual cases tended to increase from 8 cases in 2004 to 23 cases in 2010 and then to decrease to 9 cases in 2013. The location data of pollution incidents showed 32 cases in Busan metropolitan city (31%), 30 cases in Jeonnam (29%), 21 cases in Gyeongam (21%), 5 cases in Jeju (5%), 4 cases in Gangwon (4%), 4 cases in Gyeongbuk (4%), 3 cases in Chungnam (3%) and 3 cases in Incheon metropolitan city (3%). According to the data of work types of shipyards, 60 cases happened during the work of ship repair (58%), 25 cases during the work of ship breakup (24%), 10 cases in the course of ship building (10%) and 8 cases by others (8%). The data of pollutant type showed oil and oily mixtures to be 59 cases (57%), waste paint dust to be 22 cases (21%), iron dust and welding slag to be 13 cases (13%), wastes to be 4 cases (4%), waste FRP powder to be 3 cases (3%), and others to be 2 cases (2%). The plans for the prevention of pollution incidents in shipyards of Korea were proposed as follows; (1) Observance of the related laws and regulations, (2) Establishment and implementation of action plans to prevent areas dense with shipyards from causing pollution incidents, (3) Establishment and implementation of oil pollution prevention plans in shipyards, especially during the ship repair and breakup works, (4) Preparation of measures to solve civil complaints against pollution incidents in shipyards, and (5) Improvement in national management for the control of shipyards.