• 제목/요약/키워드: Total pollutant management

검색결과 229건 처리시간 0.032초

생물정화기작과 총허용오염부하량을 연계한 마산만의 효율적 해양환경 개선방안 (Effective Costal Environmental Management by Conjugation of Modeling of Bio-Purification and Total Allowable Pollutant Loads in Masan Bay)

  • 엄기혁;김귀영;이원찬;이대인
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제15권1호
    • /
    • pp.38-46
    • /
    • 2012
  • 마산만은 폐쇄성이 강하여 해수유통이 원활하지 못해 소량의 오염물질이 유입되어도 외해로 확산되지 못하고 만내에 계속 머물게 되어 해역의 오염이 가중되고 있고, 만내에서 증식한 식물플랑크톤과 하천을 통하여 유입된 오염물질은 해저에 침강되어 분해·무기화를 거쳐 영양염이 다시 수중으로 공급되어 부영양화, 적조, 빈산소 등을 유발하여 생태계 건강도를 악화시키고 있다. 이러한 마산만의 해양환경개선을 위해 해수유동모델(COSMOS)과 생태계모델(EUTRP2)을 이용하여 환경용량을 산정하고 이매패의 개체군 성장모델을 연계하여 이매패를 포함한 생태계내 물질 순환 구조를 해석하여 이매패의 수질정화 효과를 분석함으로써 비용효과적이고 친환경적인 내만수질개선방안을 도출하고자 한다. 육상오염원의 효과적인 관리 방안으로 환경용량 산정을 통해 시나리오별 유입부하 삭감에 의한 수질관리 방안은 유입부하의 50~90%에 해당하는 비현실적인 삭감량이 제시된다. 마산만의 자생 COD를 평가한 결과 총 COD의 30.7%가 외부유입에 의한 COD이고 69.3%가 자생 COD에 의한 것으로 계산되었다. 이는 마산만의 수질관리에 있어 유기물의 공급원에 대한 제어뿐만 아니라, 자생 COD를 증가시키는 영양염의 유입원에 대한 제어가 필수적이라는 것을 의미한다. 마산만의 자생 COD를 유발하는 영양염류를 제거하기 위해 현재 상황에서 적용가능한 고도처리 증설의 비용을 산정하여 이매패류에 의한 생물정화 효과와의 경제성을 비교분석해 본 결과 20년 동안의 총 비용에 있어 질소를 제거하기 위한 질산화탈질법 906억원, 인을 제거하기 위한 화학침전법은 559억, 이매패류 양식은 461억원으로 산정되어 이매패류 양식은 질소와 인을 같이 제거하는 고도처리 도입에 비해서는 약 1/3의 비용이 소요되는 것으로 나타났다.

필리핀의 수질현황 및 미래 관리계획 (Status of Water Quality and Future Plans in the Philippines)

  • ;;김이형
    • 한국습지학회지
    • /
    • 제11권3호
    • /
    • pp.89-103
    • /
    • 2009
  • 필리핀은 많은 섬들로 이루어진 국가로 물 뿐만 아니라 각종 자연환경이 풍부한 국가이나, 금세기 들어 필리핀의 농업활동 및 빠른 도시화로 인한 도시 및 산업지역으로부터 야기되는 수질오염이 심각해지고 있다. 필리핀 국가 환경관리국은 수질 모니터링과 수계오염원인 조사 등을 책임지고 있는 최고의 국가기관으로 수질오염원 원인분석과 해결방안을 모색하기 위하여 다양한 노력을 하고 있다. 그러나 DO, BOD, TSS, TDS, 중금속, coliform 등에 대해 년간 4회 이상의 모니터링 수행과정을 통해 수질관리를 하고 있기에 수질개선에 애로사항이 많다. 현재 필리핀의 각종 수질은 도시하수, 산업폐수, 농업폐수 및 비점오염원에 의해 영향을 많이 받고 있는 것으로 나타났으며, 도시 하수관거의 불량도 수질에 크게 영향을 끼치는 것으로 나타났다. 본 연구의 목적은 필리핀의 수질오염원인 및 정도를 분석하고 그 결과를 제시함으로써 향후 국가적으로 관심을 가져야 할 분야가 어디인지를 명시하기 위하여 수행되었다.

  • PDF

도로이동오염원의 활동도와 도로변 질소산화물 농도의 관계 (Relation with Activity of Road Mobile Source and Roadside Nitrogen Oxide Concentration)

  • 김진식;최윤주;이경빈;김신도
    • 한국대기환경학회지
    • /
    • 제32권1호
    • /
    • pp.9-20
    • /
    • 2016
  • Ozone has been a problem in big cities. That is secondary air pollutant produced by nitrogen oxide and VOCs in the atmosphere. In order to solve this, the first to be the analysis of the $NO_x$ and VOCs. The main source of nitrogen oxide is the road mobile. Industrial sources in Seoul are particularly low, and mobile traffics on roads are large, so 45% of total $NO_x$ are estimated that road mobile emissions in Seoul. Thus, it is necessary to clarify the relation with the activity of road mobile source and $NO_x$ concentration. In this study, we analyzed the 4 locations with roadside automatic monitoring systems in their center. The V.K.T. calculating areas are set in circles with 50 meter spacing, 50 meter to 500 meter from their center. We assumed the total V.K.T. in the set radius affect the $NO_x$ concentration in the center. We used the hourly $NO_x$ concentrations data for the 4 observation points in July for the interference of the other sources are minimized. We used the intersection traffic survey data of all direction for construction of the V.K.T. data, the mobile activities on the roads. ArcGIS application was used for calculating the length of roads in the set radius. The V.K.T. data are multiplied by segment traffic volume and length of roads. As a result, the $NO_x$ concentration can be expressed as linear function formula for V.K.T. with high predictive power. Moreover we separated background concentration and concentrations due to road mobile source. These results can be used for forecasting the effect of traffic demand management plan.

만경강 유역의 비점오염물질 유출모의를 통한 새만금 만 유입부의 수질 예측 (Prediction of Water Quality at the Inlet of Saemangeum Bay by using Non-point Sources Runoff Simulation in the Mankyeong River Watershed)

  • 류범수;이채영
    • 상하수도학회지
    • /
    • 제27권6호
    • /
    • pp.761-770
    • /
    • 2013
  • This study was carried out to forecast the flow rate and water quality at the inlet of the Saemangeum bay in Korea using the SWMM(Storm Water Management Model) and the WASP(Water Analysis Simulation Program), and to analyze the impacts of pollutant loading from non-point source on the water quality of the bay. The calibration and validation of flow rate and water quality were performed using those from two monitoring points in the Mankyeong river administrated by Korean Ministry of Environment as part of the national water quality monitoring network. When the river flow rate was calibrated and validated using the rainfall intensities during 2011-2012, $R^2$ (i.e., coefficient of determination) was ranged from 0.91 to 0.96. For water qualities, it was shown that $R^2$ of BOD(Biochemical Oxygen Demand) was ranged from 0.56 to 0.86, and $R^2$ of T-N(Total Nitrogen) was from 0.64 to 0.75, and $R^2$ of T-P(Total Phosphorus) was from 0.67 to 0.89. The integrated modeling system showed significant advances in the accuracy to estimate the water quality. Finally, further simulations showed that annual average flow of the river running into the bay was estimated to be $1.439{\times}10^9m^3/year$. The discharged load of BOD, T-N, and T-P into the bay were anticipated to be 618.7 ton/year, 331.5 ton/year, and 40.4 ton/year, respectively.

A METHODOLOGY TO EVALUATE THE EFFECTIVENESS OF REGIONAL SCALE FOR NON-POINT SOURCE LOADS

  • Lee, Ju-Young;Choi, Jae-Young
    • Environmental Engineering Research
    • /
    • 제11권4호
    • /
    • pp.194-200
    • /
    • 2006
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program, projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in $kg/km^2/yr$ of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV. Especially, farmers in Cameron County consume a lot of fertilizer and pesticide to improve crop yield net profit. Then, this region can be created as larger nonpoint source area for nutrients and the intensity of runoff by excess irrigation water. And many sediment and used irrigation water with including high nutrients can be discharged into Rio Grade River.

Evaluation on the implications of microbial survival to the performance of an urban stormwater tree-box filter

  • Geronimo, Franz Kevin;Reyes, Nash Jett;Choi, Hyeseon;Guerra, Heidi;Jeon, Minsu;Kim, Lee-Hyung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.128-128
    • /
    • 2021
  • Most of the studies about stormwater low impact development technologies used generalized observations without fully understanding the mechanisms affecting the whole performance of the systems from catchment to the facility itself. At present, these LID technologies have been treated as black box due to fluctuating flow and environmental conditions affecting its operation and treatment performance. As such, the implications of microbial community to the overall performance of the tree-box filter were investigated in this study. Summer season was found to be the most suitable season for microorganism growth since more microorganism were found during this season. Least microorganism count was found in spring because of the plant growth during this season since plant penology influences the seasonal dynamics of soil microorganisms. Litterfall during fall season might have affected the microorganism count during winter since, during this season, the compositional variety of soil organic matter changes affecting growth of soil microbial communities. Microbial analyses of sediment samples collected in the system revealed that the most dominant microorganism phylum is Proteobacteria in all the seasons in both inlet and outlet comprising 37% to 47% of the total microorganism count. Proteobacteria was followed by Acidobacteria, Actinobacteria and Chloroflexi which comprises 6% to 20%, 9% to 20% and 2% to 27%, respectively of the total microorganism count for each season. These findings were useful in optimizing the design and performance of tree box filters considering physical, chemical and biological pollutant removal mechanisms.

  • PDF

불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석 (Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads)

  • 박형석;최환규;정세웅
    • 환경영향평가
    • /
    • 제24권1호
    • /
    • pp.16-34
    • /
    • 2015
  • 불투수면(IC)이란 빗물 등의 강수가 토양 속으로 침투할 수 없는 포장 지역이라 정의할 수 있으며, 일반적으로 도시화 과정에서 형성되는 불투수면은 주로 도로(Drive way), 인도(Sidewalk), 주차장(Parking lot), 건물의 지붕(Roof) 등의 형태로 나타난다. 불투수면의 증가는 유출계수를 증가시켜 강수의 침투량 및 지하수 수위를 감소시킨다. 이로 인해 홍수기에 직접 유출량과 홍수피해를 증가시키고, 갈수기에는 하천의 건천화를 유발하여 수생태계를 악화시킨다. 미국 환경부에서는 불투수면을 저감하기 위한 주요정책으로 LID(Low Impact Development) 또는 GI(Green Infrastructure)의 도입을 제시하고 있다. 본 연구에서는 도시 유역의 강우-유출 및 수질 해석을 위해 SWMM모형을 구축하고, 도시 유역의 대표적인 토지이용 유형에서 불투수면 영향 저감을 위한 다양한 LID 기법을 적용하고 그 효과를 평가하였다. 모형의 보정기간은 2009년 7월 17일, 검정기간은 2009년 8월 11일이며, 강우유출발생시 측정한 실측 데이터를 사용하여 검 보정을 하였다. 아파트, 학교, 도로, 공원 등으로 구성된 복합용지에 투수성 포장(Pervious cover)과 옥상녹화(Green roof)기법을 단계별로 적용하고 유출량 및 오염부하 저감에 미치는 영향을 모의한 결과, 유역 내 불투수면이 투수면으로 전환되는 비율이 증가함에 따라 강우시 발생하는 유출량과 오염물질 부하량의 저감 효과가 큰 것으로 나타났다. 특히, 건물 옥상 녹화 및 주차장과 도로에 투수성 포장을 적용한 경우, 총 유출량은 15~61 %의 저감효과를 보였으며, 오염부하량에 대해서는 TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 %의 저감효율을 나타냈다.

시흥·안산 산단 및 영향지역의 휘발성유기화합물질(VOCs) 분포 특성 (Distribution Characteristics of Volatile Organic Compounds (VOCs) in an Industrial Complex and in Affected Areas in Siheung and Ansan)

  • 김동기;우정식;한현수;김용준;김웅수;홍순모;김종수;윤미혜
    • 한국환경보건학회지
    • /
    • 제46권3호
    • /
    • pp.256-266
    • /
    • 2020
  • Objectives: The concentrations and distribution characteristics of volatile organic compounds (VOCs) in an industrial complex and surrouding affected residential areas were investigated in an effort to support the efficient management of VOCs. Methods: The atmospheric concentrations of VOCs were analyzed at sites around the Sihwa-Banwol complex located in the cities of Siheung and Ansan and in the surrounding affected residential areas. The appearance of VOCs and the characteristics of their temporal and spatial distribution were evaluated. Results: The total VOC concentrations in the industrial complex were detected at 1.9-2.3 times higher than in the affected areas, but the daily VOCs distributions showed similar patterns in both sites. In particular, it was confirmed that the composition ratio of the VOCs and concentration fluctuations over time in the affected areas are similar to those in the adjacent industrial complex. VOC levels in the affected areas were higher than in residential areas in cities without an industrial complex. Conclusions: VOCs in residential areas near an industrial complex were highly distributed due to the influence of continuous pollutant emissions from the industrial complex. Therefore, the management of VOCs in the atmosphere of the affected area is important for identifying and managing the sources of VOCs detected in high concentrations in the industrial complex.

WEPP 모형을 이용한 골프장 잔디 관리에 따른 유출특성 모의 (Evaluation of Runoff Prediction from Managed Golf Course using WEPP Watershed Model)

  • 최재완;신민환;류지철;금동혁;강현우;천세억;신동석;임경재
    • 한국물환경학회지
    • /
    • 제28권1호
    • /
    • pp.1-9
    • /
    • 2012
  • It has been known that Golf course could impose negative impacts on water-ecosystem if pollutant-laden runoff is not treated well. It is important to control non-point source and re-use treated wastewater from the golf course to secure water quality of receiving waterbodies. At golf courses, the rainfall-runoff is affected by various practices to manage grasses. In many hydrological modelings, especially in simple rainfall-runoff modeling, effects on runoff of plant growth and cutting are not considered. In the study, the water erosion prediction project (WEPP), capable of simulating plant growth and various management, was evaluated for its runoff prediction from golf course under grass cutting and irrigation. The %Difference, $R^2$ and the NSE for runoff comparisons were 1.15%, 0.93 and 0.92 for calibration, and 18.12%, 0.82 and 0.88 for validation period, respectively. In grass cutting scenario, grass height was managed to be 18~25 mm. The estimated runoff was decreased by 27%. The difference in estimated total runoff was 11.8% depending on irrigation. As shown in this study, if grass management and irrigation are well-controlled, water quality of downstream areas could be obtained.

폐기물 소각시설 최적가용기법 (BAT) 기준서의 이해와 개선방향 (Understanding and Improvement of Best Available Techniques for Waste Incineration Facility)

  • 신수정;박재홍;박상아;이대균;김대곤
    • 한국대기환경학회지
    • /
    • 제33권6호
    • /
    • pp.533-543
    • /
    • 2017
  • As the public interest in environmental issues increased, the "Act On The Integrated Control Of Pollutant-Discharging Facility" was enacted. Through the integrated environmental pollution prevention act in which 19 industries with large environmental impacts are sequentially applied, pollutants can be managed in a medium-integrated manner and integrated permission of the business unit is possible and BAT can be applied to enable a scientific and proactive environmental management system. In order to facilitate the implementation of integrated environmental pollution prevention act with these advantages, the BAT BREF should be published, modified and revised every 5 years considering the level of scientific development. This study reviewed the issues to be considered in applying BAT and the types of BAT and focused on presenting improvements and development direction when revising and supplementing the standards in the future based on these contents. For this purpose, when revising the standards, it will be necessary to reflect on the domestic situation, to expand the TWG(Technical Working Group) of small-scale workplace experts, and to exchange opinions with business places that have similar processes for each waste type through a systematic total inspection. In addition to these methods, by establishing a resident participation system through information disclosure, it is expected to be used as a guideline for environmental management of business places not subject to integrated permission of less than 3 types as well as those subject to integrated permission.